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Transcription dynamics stabilizes nucleus-like
layer structure in chromatin brush†

Tetsuya Yamamoto ‡*a and Helmut Schiessel§ab

We use a brush of DNA in a solution of transcriptional machinery and histone proteins to theoretically

predict that this brush shows phase separation due to the instability arising from the disassembly of

nucleosomes during transcription. In the two-phase coexistent state, collapsed chains (with relatively large

nucleosome occupancy) lie at the grafting surface and swollen chains (with relatively small nucleosome

occupancy) are distributed at the space above the collapsed chains, analogous to the structure of

chromatin in differentiated cells. This layer structure is stabilized by the lateral osmotic pressure of swollen

chains. For a relatively small grafting density, DNA brushes show tricritical points because the entropic

elasticity with respect to the lateral excursion of swollen chains balances with the lateral osmotic pressure

of these chains. At the tricritical points, DNA brushes show large fluctuations of local nucleosome

concentration, which may be reminiscent of the fluctuations observed in embryonic stem cells.

1 Introduction

In an eukaryotic cell DNA is packed in a nucleus as chromatin,
a complex of DNA and histone proteins.1 The repeating unit of
chromatin is the nucleosome, in which DNA is wound around
an octamer of histone proteins by 1.65 turns.2 The chromatin of
embryonic stem (ES) cells shows fluctuations in nucleosome
density of relatively long time (in the order of minutes) and
length (in the order of mm) scales, analogous to critical
fluctuations.3 In contrast, chromatin of differentiated cells
shows regions of relatively large nucleosome density (which
are called heterochromatin) that coexist with regions of relatively
small nucleosome density (which are called euchromatin). In
many differentiated cells, heterochromatin is localized at the
vicinity of nuclear membranes and euchromatin is localized at
the center of the nucleus (which we call the canonical structure).
The transitions of chromatin structures during differentiation
are reminiscent of phase separation. Because the rate with which
a stretch of DNA is transcribed depends on the local packing
density of nucleosomes, the phase separation of chromatin
during differentiation may play an important role in determin-
ing the lineage of stem cells. It is thus of interest to theoretically

study the physics of the phase separation and pattern formation
of chromatin.

The classical theory of phase separation predicts that the
phase separation is driven by the attractive interactions between
nucleosomes (that stabilize the condensed state, where local
nucleosome concentrations are relatively large) and thermal
fluctuations (that destabilize the condensed state).12 Nucleosomes
show attractive interactions at physiological salt concentrations
because overall positively charged histone tails bind to the cores
of other nucleosomes, which are negatively charged due to the
charge inversion.13–16 However, nucleosomes are relatively
stable structures and thermal fluctuations are not large enough
to disassemble nucleosomes and/or drive thermal diffusion of
nucleosomes along DNA.17–19 Single molecule experiments have
shown that nucleosomes are disassembled when RNA polymerase
(RNAP) collides with nucleosomes during transcription.20,21 This
process may thus break the symmetry of chromatin and drive the
phase separation. Indeed, a comparison between theory and
experiments suggest that fluctuations arising from active processes
dominate thermal fluctuations for long time scales.22

A DNA brush, in which DNA is end-grafted to a solid surface,
is a simple model system, which enables us to quantitatively
change the local packing density of DNA.4–11 When a DNA
brush is prepared in a solution of histone proteins, one can also
control the local concentration of nucleosomes in the brush via
the grafting density of DNA and the concentration of histone
proteins in the solution. DNA brushes may be thus useful to
study the physics of the phase separation and pattern formation
of chromatin. In our previous work, we have theoretically pre-
dicted that a DNA brush shows phase separation in a solution of
transcription machinery and histone proteins.11 Our theory
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predicts that this phase separation is driven by an instability
arising from the fact that the nucleosome occupancy of DNA
chains decreases with increasing the transcription rate on these
chains due to the collision between RNAP and nucleosomes
during transcription; the transcription rate, in turn, further
increases with decreasing the nucleosome occupancy because
the local concentration of RNAP is larger at a region of smaller
nucleosome concentration due to the excluded volume inter-
actions between RNAP and nucleosomes. However, this theory is
effective only for cases in which DNA brushes show macroscopic
lateral phase separation.

Mixed polymer brushes show various patterns of microphase
separation.23–26 Recently, van Lehn and Alexander-Katz have
theoretically predicted that two-component polymer brushes
show various patterns of domains, for cases in which the
molecular weights of miscible polymers are very different, due
to the lateral osmotic pressure of longer chains.23 The tendency
of such a brush to suppress macroscopic phase separation, even
when the grafting-ends of the constituent polymers are mobile
along the surface, was first predicted by Komura and Safran.27

Motivated by these results, we present here an extension of our
previous theory of DNA brushes11 to predict the structures of
these brushes in the two-phase coexistent state. We find that in
the two-phase coexistent state, DNA brushes form a layer struc-
ture, in which DNA chains of larger nucleosome occupancy
collapse on the grafting surfaces and DNA chains of smaller
nucleosome occupancy cover the space above the collapsed
chains. This structure is stabilized by the lateral osmotic pressure
of the swollen chains. For a relatively small grafting density, DNA
brushes show a tricritical point, where the fraction of swollen
chains fluctuates significantly. This is because the lateral osmotic
pressure is balanced by the entropic elasticity with respect to
the lateral excursions of swollen chains. This situation is very
different from the two-component polymer brushes, where
the fraction of polymer components is fixed. The layer structure
is reminiscent of the canonical structure of differentiated
cell nuclei and the fluctuations at the tricritical point are
reminiscent of chromatin dynamics in ES cells. Our theory
may provide insight into the physics of the phase separation of
chromatin during differentiation.

2 Methods
2.1 DNA brush

We take into account the possibility of stabilizing layer structures
in an extension of our previous model.9,11 We treat a DNA brush,
where DNA chains are end-grafted to a surface with a grafting
density s (see Fig. 1). Each DNA chain is composed of N chain
segments of length leff. We treat these DNA chains as a 1d lattice
of binding sites, which can be occupied by nucleosomes or RNAP.
For simplicity, we assume that each chain segment has one
binding site, although one Kuhn segment of DNA chain
(B100 nm) is long enough to assemble two nucleosomes. Each
DNA chain has a promoter (transcription starting site) at one end
and a terminator (transcription ending site) at the other end.

DNA chains that are end-grafted at the promoter end are
randomly mixed with DNA chains that are end-grafted at the
terminator ends. The DNA brush is in a solution of RNAP and
histone proteins (and other small molecules that are necessary
for transcription and the assembly of nucleosomes). We use the
Alexander approximation, where the concentration of DNA chain
segments is assumed to be uniform in the brush region (in the
z-direction). With this approximation, the promoters and
terminators are located at the brush top and grafting surface.

2.2 Transcription dynamics

The nucleosome occupancy of DNA chains is derived by analyzing
the transcription dynamics and the dynamics of nucleosome
assembly and disassembly. We here treat the uni-directional
motion of RNAP during transcription. Transcription starts when
a RNAP binds to the promoter of a DNA chain. Then, the enzyme
shows a uni-directional motion towards the terminator in a base-
by-base manner, while synthesizing a RNA chain of complementary
base sequence. When the RNAP reaches the terminator, it is
released from the DNA chain, together with the RNA product.
For simplicity, we do not treat here the stochasticity involved in
the binding of RNAP to the promoters and in the uni-
directional motion of RNAP along DNA.

The binding rate of RNAP to a promoter has the form

Rp = lpr, (1)

where r is the local concentration of RNAP at the position of the
promoter (in the solution) and lp is the rate constant that
accounts for the binding of RNAP to the promoter. We neglect
the unbinding rate of RNAP from promoters because RNAP
firmly grips DNA chains once it changes its conformation.
The migration rate of RNAP along a DNA chain has the form

Runi = xnrnp(1 � nhis), (2)

Fig. 1 Homogeneous DNA brushes are prepared by end-grafting DNA
chains on a surface. These DNA brushes are in a solution of RNA
polymerase (shown as spheres), histone proteins (shown as cylinders),
and other small molecules that are necessary for transcription and nucleo-
some assembly. Pressure is applied to a DNA brush by pushing it to
another symmetric DNA brush. We use the coordinate systems, where
the z-direction is normal to the grafting surface. [Reproduced from ref. 11.]
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where x is the rate constant that accounts for the motion of
RNAP from one binding site to the next. The rate constant x is
the inverse of the ensemble average of the total time, with
which an RNAP moves by one Kuhn length, B294 bp. We thus
assume that the rate constant x is uniform along DNA chains.
nrnp is the occupancy of RNAP at one binding site and nhis is the
nucleosome occupancy (the probability of finding a histone
octamer) at the next binding site; eqn (2) shows the fact that the
uni-directional motion of RNAP is hampered by nucleosomes.
In steady states, nrnp and nhis are uniform along DNA chains
due to the Alexander approximation (see also Section 2.3).
The unbinding rate of RNAP from the terminator has the form

Rt = ltn
t
rnp, (3)

where lt is the rate constant that accounts for this process and
nt

rnp is the occupancy of RNAP at the terminator. With the forms
of eqn (1) and (3), we assumed that the promoters and the
terminators are not occupied by nucleosomes due to their specific
basepair sequence. There is indeed nucleosome depletion at the
transcription starting and ending sites.28

2.3 Dynamics of nucleosome assembly and disassembly

The local concentration of histone proteins is uniform in the
brush region due to the Alexander approximation. Moreover,
because histone proteins are smaller than RNAP, for simplicity,
we neglect the interactions between histone proteins and nucleo-
somes (or vacant DNA chain segments). With this approximation
the local concentration of histone proteins in the brush region is
equal to the concentration c0 of histone proteins in the external
solution (defined by the chemical potentials of histone proteins).
Without changing the physics, we neglected (i) the fact that nucleo-
some cores are composed of octamers of histone proteins, (ii) the
specific chemistry of four types of histone proteins, and (iii) the fact
that the assembly of nucleosomes are usually guided by chaperones.

The rate of nucleosome assembly has the form

Ron = lhisc0(1 � nhis), (4)

where lhis is the rate constant that accounts for the assembly of
nucleosomes. The rate of nucleosome disassembly has the form

Roff = znhisnrnp. (5)

With eqn (5), we neglected the spontaneous disassembly of nucleo-
somes due to thermal fluctuations. This equation represents the
fact that nucleosomes are disassembled by the collision between
RNAP and nucleosomes during transcription. z is the rate constant
that accounts for this process.

2.4 Steady state

In steady states, the binding rate of RNAP at the promoter, the
migration rate of RNAP along a DNA chain, and the unbinding
rate of RNAP from the terminator are all equal. The rates of
nucleosome assembly and disassembly are also equal. These
equalities have the forms

Rp = Runi(= Rt) (6)

Ron = Roff (7)

These equalities lead to the nucleosome occupancy nhis as a
function of the local concentration r of RNAP at the position
of the promotor (in the solution) and the rate constants.

With the local equilibrium approximation, the chemical
potential mrnp of RNAP is continuous at the brush top. Because
DNA chains are end-grafted with random orientations, the tran-
scription dynamics along these DNA chains does not generate
gradients of RNAP concentrations; the chemical potential mrnp is
uniform in the entire system. The local concentration of RNAP in
the brush region thus has the form

r = r0e�nFon, (8)

where n is the 2nd virial coefficient that accounts for the
interactions between nucleosomes and RNAP. r0 is the concen-
tration of RNAP in the external solution (defined by the chemical
potential mrnp of RNAP). Fon is the local concentrations of
nucleosomes in the brush region that have the form

Fon ¼
sN
h
nhis; (9)

where h is the height of the brush. Eqn (6)–(8) lead to the
nucleosome occupancy as a function of brush height.

2.5 Force balance equation

We treat cases in which a DNA brush is pushed into another
DNA brush with applied pressure Papp. In physiological salt
concentrations, DNA chains are treated as electrically neutral
semiflexible polymers of Kuhn length leff.29 We here treat cases
in which the dynamics of DNA chains is faster than the other
dynamical processes mentioned above and thus the height of
the brush is determined by the balance of forces. When DNA
chains are much longer than the Kuhn length leff, the force
balance equation of the brush in the z-direction has the form

Papp

T
¼ � 3sh

Nleff 2
þ 1

2
wonFon

2 þ wintFonFoff þ
1

2
woffFoff

2 þ 2

3
uFon

3:

(10)

The first term on the right side of the equation is the entropic
elasticity of DNA chains. The next three terms are the osmotic
pressure arising from the (2-body) interactions between DNA
chain segments. The last term is the osmotic pressure arising
from the three-body interactions between nucleosomes and
suppresses the complete collapses of DNA chains. To derive
eqn (10), we used the fact that the osmotic pressure generated
by RNAP and the interactions between RNAP and DNA chain
segments do not change the structure of the brush for cases in
which the concentration of RNAP is dilute enough. The Kuhn
length has the form leff = la(1 � gnhis), where la is the Kuhn
length of vacant DNA chains (B100 nm) and g is a constant that
accounts for the fact that DNA chains are reeled around histone
octamers when they assemble into nucleosomes. won, wint, and woff

are the 2nd virial coefficients that account for the (nucleosome)–
(nucleosome) interactions, the (nucleosome)–(vacant DNA
segment) interactions, and the (vacant DNA segment)–(vacant
DNA segment) interactions, respectively. Experiments have
shown that the (vacant DNA segment)–(vacant DNA segment)
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interactions are repulsive, woff 4 0, and the (nucleosome)–
(nucleosome) interactions are attractive, won o 0, at physiological
salt concentrations.13–16 u is the virial coefficient that accounts for
the 3-body interactions between nucleosomes. Because the fifth
term is significant only for nhis B 1, we use the approximation
uFon

3 C us3N3/h3 throughout the paper. The local concentration
Foff of vacant DNA chain segments has the form

Foff ¼
sN
h

1� nhisð Þ: (11)

Solving eqn (6), (7) and (10) leads to the nucleosome occupancy
as a function of applied pressure, virial coefficients, and rate
constants.

2.6 Maxwell construction and its extension

Eqn (6), (7) and (10) predict that applied pressure is a non-
monotonic function of the height of the DNA brush, analogous
to the van der Waals theory of liquid–gas phase transitions
(see also Fig. 3). In the classical theory of phase separation, the
binodal curves of the phase separation during the latter transi-
tions are predicted by using the common tangent method.12

This method is derived by the minimization of the free energy
and may not be applicable to predicting the coexistence of two
non-equilibrium steady states. The Maxwell construction is
another method to predict the binodal curves and it ensures
that the mechanical work to change one phase to the other
coexisting phase is zero.30 Steady state thermodynamics states
that the difference of the generalized free energy between two
non-equilibrium steady states is equal to the mechanical work
that is necessary to change one state to the other.31 Indeed, the
mechanical balance at the interface between domains leads to
the fact that the Maxwell construction is the necessary condi-
tion for two macroscopic phases to coexist (see also Section S1
in ESI†). Motivated by this result, we use an extension of the
Maxwell construction to predict the transcription driven phase
separation of DNA brushes.

We take into account the possibility of stabilizing a layer
structure in an extension of the Maxwell construction. In
contrast to two-component polymer brushes, the fraction f of
swollen chains in DNA brushes is not fixed and depends on the
dynamics of nucleosome assembly and disassembly. To predict
the fraction f, we think of a two-step process where (i) pressure
is applied to a fraction of chains in the normal direction to
collapse chains and then (ii) swollen chains are allowed to
diffuse to the space above the collapsed chains (see Fig. 2). The
mechanical work that is necessary for this process has the form

W(f) = W>(f) + W8(f) + Wint(f). (12)

The work W>(f) is necessary for the first step and W8(f) is
necessary for the second step. Wint(f) is the work that is necessary
to make interfaces between swollen chains and collapsed chains
during the two steps. For simplicity, we neglect the interfacial
work Wint(f) in the main article, see Section S5 of the ESI.†

The work W>(f) done by the excess normal pressure has
the form

W?ðfÞ ¼ �ð1� fÞA
ðhc
hs�þhc

dh0P?ðh0Þ; (13)

where A is the area of the brush and f is the fraction of swollen
chains. hc and hs* + hc are the height of collapsed and swollen
chains and are two stable solutions of eqn (10) for a given
applied pressure (see also Fig. 2a and b). The excess normal
pressure P> has the form

P?ðhÞ
T

¼ � 3sh
Nleff 2

þ 1

2
wonFon

2 þ wintFonFoff þ
1

2
woffFoff

2

þ 2

3
uFon

3 �Papp

T
;

(14)

see also eqn (10). The work W8(f) done by the excess lateral
pressure has the form

WkðfÞ ¼ �
ðA
fA

dA0PkhsðA0Þ þ
ðhsðfÞ
hs�

dhs
0
PappAðhs

0 Þ: (15)

The first term of eqn (15) is the work done by the lateral
pressure while swollen chains invade the space above the
collapsed chains. In this process, the height hs of swollen
chains at this space decreases with increasing the area A(hs)
of these chains (and vice versa), provided that a constant
pressure Papp is applied to these chains. The second term of
eqn (15) is the work done by the applied pressure Papp in this
process. P8(f) is the excess lateral pressure and has the form

PkðfÞhs
T

¼ � 3

Nsleff 2
þ 1

2
wonFs on

2 þ wintFs onFs off

�

þ1
2
woffFs off

2 þ 2

3
uFs on

3 �Papp

T

�
hs:

(16)

The derivation of eqn (16) is shown in Section S2 in ESI.† The
first term of eqn (16) is the entropic elasticity due to the lateral
excursion of swollen chains and is significant only when the
grafting density of DNA chains is relatively small. Ns is the

Fig. 2 Two-step process to predict a layer structure: (i) pressure is applied to a fraction of chains in the normal direction to collapse chains (a - b) and
then (ii) swollen chains are allowed to diffuse to the space above the collapsed chains (b - c).
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number of chain segments (per chain) in the region above the
collapsed chains. Fs on (= sfNsnhis/hs) and Fs off (= sfNs(1� nhis)/hs)
in eqn (16) are the concentrations of nucleosomes and vacant
DNA chain segments in this region.

The above argument leads to the fact that the work that is
necessary to collapse a small fraction df of swollen chains has

the form �dWðfÞ
df

df. In a steady state, collapsed chains change

to swollen chains with the same rate as the reverse process.
This leads to the condition

dWðfÞ
df

¼ 0: (17)

Eqn (17) returns to the Maxwell construction for cases in which
DNA brushes show macroscopic lateral phase separations,
where W8(f) = Wint(f) = 0. Eqn (17) is thus a reasonable
extension of the Maxwell construction to predict the layered
structures of DNA brushes. Eqn (17) corresponds to the mini-
mization of the generalized free energy in the steady state
thermodynamics.31

The layer structure is more stable than the lateral phase
separation when the work W(f) is smaller than the work W>(f).
The work W>(f) has a minimum at f = 0 (a uniform collapsed
brush) or 1 (a uniform swollen brush) because it is a linear
function of the fraction f. The lateral phase separation is
driven for W>(f) = 0, which is equivalent to the Maxwell
construction. We derive the phase diagram of a DNA brush
by finding the minimum of the work W(f) and W>(f), see also
Section S4 in the ESI.†

2.7 Chain partition

In the layer structure, the segments of swollen chains are
located at the interstitial regions between domains of collapsed
chains and the space above the collapsed chains. The partition
of the chain segments between the two regions is determined
by the equality of the chemical potentials of chain segments in
the two regions. The chemical potentials mc of chain segments in
the interstitial region between collapsed chains have the form

mc
T

sNc

hc
¼ � 3

2

shc
Ncleff 2

þ wonFc on
2 þ 2wintFc onFc off

þ woffFc off
2 þ uFc on

3;

(18)

where Nc is the number of chain segments (per chain) in this
region. Fc on (= sNcnhis/hc) and Fc off (= sNc(1 � nhis)/hc) are the
concentrations of nucleosomes and vacant chain segments in
the region. The chemical potentials ms of chain segments in the
region above the collapsed chains have the form

ms
T

sfNs

hs
¼ � 3

2

fshs
Nsleff 2

� 3
1� f

Nshsleff 2
þ wonFs on

2 þ 2wintFs onFs off

þ wo ffFs off
2 þ uFs on

3;

(19)

where the second term is the contribution of the entropic
elasticity with respect to the lateral excursion of swollen chains

and is zero for f = 1. The derivation of eqn (18) and (19) are
shown in Section S2 in the ESI.†

2.8 Dimensionless parameters

We here reduce the number of parameters by rescaling them
with characteristic length and pressure scales and introducing
a dimensionless rescaled rate constant. The force balance
equation leads to the scales of the brush height hAlx and
osmotic pressure PAlx in the forms

hAlx ¼ Nla
jwjs
6la

� �1=3

(20)

PAlx

T
¼ 3s

la

jwjs
6la

� �1=3

; (21)

respectively, where hAlx is the height of the Alexander brush and
PAlx is the pressure that is necessary to compress the Alexander
brush by B1/4. In eqn (20) and (21), we used a combination
w (= won + woff � 2wint) of the 2nd virial coefficients of
chromatin–chromatin interactions (including both nucleo-
somes and vacant DNA segments). In this paper, we mainly
treat cases in which the virial coefficient w is negative. The
magnitudes of chromatin–chromatin interactions also depend
on the nucleosome occupancy, relative to the other two combi-

nations n� ¼ woff � wint �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wint

2 � wonwoff

p� �.
w of the 2nd

virial coefficients. The nucleosome occupancy depends on the
transcription dynamics and the dynamics of nucleosome
assembly/disassembly via the rescaled rate constant

Z0 ¼
lpr0z
lhisc0x

: (22)

The transcription rate (and the disassembly of nucleosomes)
increases relative to the rate of nucleosome assembly with
increasing the rescaled rate constant Z0. We use the rescaled
virial coefficients ũ = 4uNs/(3|w|hAlx) and ~n = vsN/hAlx.

3 Results
3.1 Transcription drives bistability in chromatin structure

To be self-contained, we first treat the stability of uniform
phase. The results of this section has been already shown
in our previous work.11 The equality of rates, eqn (6) and (7),
leads to the brush height h as a function of the nucleosome
occupancy nhis. Substituting this relationship into the force
balance equation, eqn (10), leads to the nucleosome occupancy
and brush height of a uniform DNA brush as functions of
applied pressure (see Fig. 3).

For relatively large values of the rescaled rate constant Z0,
the nucleosome occupancy increases continuously with
increasing applied pressure Papp when the applied pressure
is smaller than a threshold value Psp1 (see Fig. 3). For larger
applied pressure (Psp1 o Papp o Psp2), the nucleosome
occupancy has three solutions, where one of the solutions is
unstable (shown by broken curves in Fig. 3). The two threshold
pressures, Psp1 and Psp2, thus correspond to the pressures on
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the spinodal curve. This situation is analogous to the van der
Waals theory of liquid–gas phase transitions. The bistability
implies that the DNA brush shows phase separation at applied
pressure Papp between the spinodal pressures. This phase
separation results from the instability arising from the fact
that nucleosomes are disassembled when RNAP collides with
nucleosomes during transcription; the nucleosome occupancy
decreases with increasing transcription rate and the transcrip-
tion rate, in turn, increases with decreasing the nucleosome
occupancy because RNAP tends to be localized at the region of
smaller local nucleosome concentration (due to the excluded
volume interactions between RNAP and nucleosomes). The
local concentration of nucleosomes increases with increasing
applied pressure. The DNA brush shows phase separation when
the transcription rate and the rate of nucleosome assembly
balance. When the applied pressure is larger than the second
threshold value Psp2, the nucleosome occupancy increases with
increasing applied pressure.

The difference between the two spinodal pressures decreases
with decreasing rescaled rate constant Z0. Eventually, the two
spinodal pressures become equal at the critical rescaled rate
constant Z0c (see the black curve in Fig. 3). For smaller values of
the rescaled rate constant, the nucleosome occupancy increases
monotonically with increasing applied pressure.

3.2 Lateral osmotic pressure stabilizes layer structure

Now we take into account the work done by the lateral pressure
P8 to predict that DNA brushes stabilize the layer structure.
For simplicity, we here treat relatively simple cases in which
the grafting density of DNA chains is very large, making the
entropic elasticity with respect to lateral excursion of swollen
chains negligible (see Section S2 in the ESI†).

An extension of the Maxwell construction that takes into
account the work done by the lateral pressure predicts that the
layered structure is stabilized in the entire region delineated by
the two spinodal curves, Psp1 and Psp2, for cases in which the

2nd virial coefficient w is negative (see Fig. 4). The layer
structure is thus more stable than lateral phase separation in
the entire region of the two-phase coexistent state. This is
because the lateral osmotic pressure of swollen chains is
relatively large when the grafting density is large and the work
done by the lateral osmotic pressure is larger than the work that
is necessary to collapse chains. When one increases the applied
pressure to a uniform swollen brush, the fraction f of swollen
chains in the DNA brush jumps from unity to a smaller value at
the threshold pressure Psp1, similar to first order phase transi-
tions (see Fig. 5). The fraction f then decreases continuously

Fig. 3 The nucleosome occupancy nhis and rescaled height h/hAlx of a DNA brush is shown as a function of rescaled applied pressure Papp/PAlx for
rescaled rate constants Z0 = 0.2 (light green), 0.325555 (black), 0.5 (cyan), and 0.8 (magenta). Stable solutions are shown by solid curves and unstable
solutions are shown by broken curves. The parameter values used for the calculations are n+ = 0.99, n� = �0.1, ũ = 0.002, ~n = 0.8, and g = 0.7.

Fig. 4 The phase diagram of DNA brushes is shown as a function of the
rescaled rate constant Z0 (defined by eqn (22)) and applied pressure
(rescaled by the osmotic pressure PAlx of the Alexander brush) for cases
in which the grafting density is very large shAlx

2
c 1 (where the lateral

entropic elasticity is negligible). The layered phase is delineated by the two
threshold curves, Psp1 and Psp2. These curves intersect at the critical point
Z0c = 0.325555 and Pc/PAlx = 0.794625. One phase (either swollen or
collapsed) is stable in the exterior of the two curves. The broken curve is
the threshold pressure of the lateral phase separation and it is less stable
than the layered structure. The values of parameters that are used for the
calculations are n+ = 0.99, n� = �0.1, ũ = 0.002, ~n = 0.8, and g = 0.7.
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with increasing applied pressure. At the second threshold pressure
Psp2, the fraction f jumps to zero, again similar to first order
phase transitions. This is in contrast to two-component polymer
brushes, where the fraction of polymer components is fixed.

3.3 DNA brushes show tricritical points for small DNA
grafting density

The lateral osmotic pressure of swollen chains decreases with
decreasing grafting density of the chains. One may think that
the layer structure is unstable when the grafting density is
small enough. When the distances between swollen chains
are relatively large, the entropic elasticity with respect to the
lateral excursions of these swollen chains (to the space above
collapsed chains) is not negligible and it decreases the osmotic
pressure of the swollen chains (see Section 2.6). We here show
cases in which swollen chains occupy the space above the
collapsed chains without vacancy; the osmotic pressure of these
swollen chains stabilizes the collapsed chains below. We pre-
dict the phase diagram of the brush by finding the fraction f
of swollen chains at the global minimum of the work W(f)
(see also eqn (17)).

Our theory predicts that a DNA brush shows lateral phase
separation, rather than the layer structure, for relatively small
values of the rescaled rate constant Z0 (see the green line in
Fig. 6). Whether the lateral phase separation is a macroscopic
phase separation or a microphase separation depends on the
sign of the interfacial tension and is beyond the scope of this
paper. The DNA brush shows a lateral phase separation for the
rescaled rate constant Z0 that is larger than the critical point
(see the filled circle in Fig. 6) and is smaller than the triple
point, where the layer structure, the uniform collapsed brush,
and the uniform swollen brush coexist (see the intersection of
the blue and green curve in Fig. 6). The layer structure is
stabilized only for values of the rescaled rate constant Z0 that
are larger than the triple point. For larger values of the rescaled
rate constant Z0, the DNA brush stabilizes the layer structure at

a threshold applied pressure Pth1, as one increases the applied
pressure from a uniform swollen state (see the blue curve in
Fig. 7). The fraction f of swollen chains decreases with increas-
ing applied pressure. The layered brush shows transitions to a
uniform collapsed brush at the second threshold applied
pressure Pth2. The first threshold value Pth1 is larger than
the spinodal pressure Psp2 and the second threshold value Pth2

Fig. 5 (a) The fraction f of swollen chains is shown as a function of applied pressure (rescaled by the two spinodal pressures, Psp1 and Psp2) for
Z0 = 1.0 (black), 2.0 (blue), and 3.0 (red). (b) The fraction of the segments of swollen chains is shown as a function of the distance z/hAlx from the grafting
surface for Z0 = 2.0. We calculated for Papp/PAlx = 2.87 (brown) and 5.20 (green), which are indeed the threshold pressures, P1 and P2 (see also the ends
of the blue curve in a). The fraction of the segments of swollen chains is Ncf/((1 � f)N + fNc) for z o hc and 1 for hc o z o hs + hc. We used n+ = 0.99,
n� = �0.1, ũ = 0.002, ~n = 0.8, and g = 0.7 for the calculations of both a and b.

Fig. 6 The phase diagram of a DNA brush is shown as a function of the
rescaled rate constant Z0 (defined by eqn (22)) and applied pressure
Papp (rescaled by the osmotic pressure PAlx of Alexander brush) for
shAlx

2 = 10.0. The green line shows the applied pressure, at which the
DNA brush shows lateral phase separation. The brush shows a critical point
(filled circle) at one end of the green line and a triple point at the other
end (‘TP’). The layer structure is stabilized in the region delineated by the
orange and blue curves. The blue curve corresponds to a first order phase
transition (with respect to the fraction f of swollen chains) and the orange
curve indicates second order phase transitions with respect to the fraction
f. The blue curve and the orange curve intersect at the tricritical point
(unfilled circle). The values of parameters that are used for the calculations
are n+ = 0.99, n� = �0.1, ũ = 0.002, ~n = 0.8, and g = 0.7. The details of the
derivation of this figure is shown in Section S4 in the ESI.†
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is smaller than the spinodal pressure Psp1; the layer structure is
less stable than the cases in which the grafting density is very
large. This is because the lateral osmotic pressure decreases
due to the lateral entropic elasticity. These results demonstrate
the fact that the lateral osmotic pressure of swollen chains
plays an important role in stabilizing the layer structure of DNA
brushes.

The fraction f of swollen chains jumps at the first threshold
pressure Pth1, analogous to first order phase transitions, for
cases in which the rescaled rate constant Z0 is smaller than a
threshold value Z0tri (see the blue curve in Fig. 6). In contrast,
when the rescaled rate constant Z0 is larger than the threshold
value Z0tri, the fraction f changes continuously at the threshold
pressure Pth1, analogous to second order phase transitions
(see the orange curve in Fig. 6). The threshold rescaled rate
constant Z0tri is thus a tricritical point (see the unfilled circle in
Fig. 6). At the tricritical point, the first and second derivative of
the work W(f) with respect to the fraction f of swollen chains is
zero and the DNA brush thus shows relatively large fluctuations
with respect to the fraction f. This situation may be analogous
to the chromatin of embryonic stem cells3 and is very different
from two-component polymer brushes, where the fraction of
polymer components is fixed. The large fluctuations are driven
by the fact that the lateral osmotic pressure of swollen chains is
balanced by the lateral entropic elasticity of these chains. We
could not find such tricritical points on the curve of the second
threshold pressure Pth2 for the values of parameters that were
covered in our numerical calculations.

Our theory predicts that DNA brushes show lateral phase
separation and tricritical points only for relatively small graft-
ing densities. A natural question is thus to ask how the phase
diagram of DNA brushes depends on the grafting density.

When one decreases the grafting density of a DNA brush from
a very large value, the DNA brush starts to show a triple point at
a threshold grafting density (see the intersection between the
emerald green curve and the black broken curve in Fig. 8).
At the threshold grafting density, the triple point is located at
the critical point. The lateral phase separation is stabilized for
the values of rescaled rate constant Z0 that are smaller than the
rescaled rate constant at the triple point (see the emerald green
curve in Fig. 8) and are larger than the critical rescaled rate
constant Z0c (see the black broken curve in Fig. 6). The rescaled
rate constant at the triple point increases with decreasing the
grafting density, whereas the critical rescaled rate constant
is constant. At the second threshold grafting density, DNA
brushes start to show a tricritical point (see the purple curve
in Fig. 8). The rescaled rate constant at the triple point and the
rescaled rate constant at the tricritical point both increase with
decreasing the grafting density. These points intersect at the
third threshold grafting density. For smaller grafting densities,
the transitions from a uniform swollen brush to the layer
structure are always of second order.

4 Discussion

Our theory predicts that DNA brushes stabilize a layer structure,
where collapsed chains lie at the grafting surface and swollen
chains cover the space above the collapsed chains. The bist-
ability of swollen and collapsed chains is due to the instability
arising from the fact that nucleosomes are disassembled by
RNAP during transcription and the layer structure is stabilized
by the lateral osmotic pressure of the swollen chains. When the
grafting density is relatively small, the lateral osmotic pressure
is suppressed by the entropic elasticity of DNA chains with
respect to the lateral excursions of swollen chains. DNA brushes
show a tricritical point for a critical rescaled rate constant Z0tri,

Fig. 7 The fraction f of swollen chains is shown as a function of applied
pressure Papp (rescaled by two transition pressures, Pth1 and Pth2) for
cases in which the grafting density is relatively small shAlx

2 = 10.0. The blue
and orange curves show the cases where the brush shows a first order
phase transition (Z0 = 1.65) and a second order phase transition (Z0 = 2.0) at
Papp = Pth1, respectively. We treat cases in which swollen chains fill the
space above collapsed chains and this treatment is effective for the values
of the fraction f that are larger than the threshold value fmin (shown by the
broken curve). The values of parameters that are used for the calculations
are n+ = 0.99, n� = �0.1, ũ = 0.002, ~n = 0.8, and g = 0.7.

Fig. 8 The rescaled rate constants Z0 at the triple point (emerald green)
and the tricritical point (purple) are shown as functions of the inverse of the
grafting density s�1 (rescaled by the brush height of the Alexander brush).
The rescaled rate constants Z0c at the critical point is shown by the (black)
broken curve as a reference. The values of parameters that are used for the
calculations are n+ = 0.99, n� = �0.1, ũ = 0.002, ~n = 0.8, and g = 0.7.
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at which the lateral entropic elasticity and lateral osmotic
pressure of swollen chains balance. At the tricritical point,
DNA brushes show large fluctuations of the fraction f of
swollen chains because the fraction f changes with approxi-
mately zero mechanical work. The DNA brushes stabilize the
layer structure just by increasing applied pressure from the
tricritical point. Critical experimental tests of these predictions
by using a simple synthetic DNA brush may advance our
understanding of the physics of the phase separation and
pattern formation of chromatin.

The layer structure is reminiscent of the canonical structure
of differentiated cell nuclei and the fluctuations at the tricritical
point are reminiscent of the critical fluctuations of chromatin
of stem cells. It is tempting to think that our theory captures
the essential features of the phase separation and pattern
formation of chromatin during differentiation. Experiments
have shown that the canonical structure of the nucleus of
differentiated cells is stabilized by lamin A/C and LBR proteins,
which tether chromatin to nuclear membranes.36 The situation
of tethered chromatin is analogous to the DNA chains of a brush.
The canonical structure of differentiated cell nuclei has been
predicted by using Monte Carlo simulations assuming that
chromatin is composed of a mixture of chain units that already
have heterochromatin-like or euchromatin-like mechanical
properties32 or have corresponding different activities (treated
by different effective temperatures).33 These simulations predict
that the canonical structure is stabilized even without the
tethering of chromatin to nuclear membranes, in contrast to
the forementioned experiments. The canonical structure was
also predicted by assuming that the two types of chain units are
in different solvent conditions34 or have different mobilities in
a pulsating container.35 These simulations predict that the
canonical structure is stabilized only when hetero-chromatin
is specifically tethered to nuclear membranes, in agreement
with forementioned experiments. In contrast to these simula-
tions, our theory predicts that the phase separation of a DNA
brush is driven even for cases in which each DNA chain in the
brush is homogeneous and the canonical structure is stabilized
even when both euchromatin and hetero-chromatin are non-
specifically tethered to the nuclear membranes.

We have used an extension of the Maxwell construction to
predict that DNA brushes stabilize the layer structure. Steady state
thermodynamics states that the work done to change a non-
equilibrium steady state to another steady state is the effective free
energy difference between these states, when so-called ‘house-
keeping’ heat is subtracted. However, there is no general theory
that predicts the binodal curve of the phase separation of non-
equilibrium systems. Indeed, a comparison between theory and
simulation predicts that the binodal curve that is predicted by
using the Maxwell construction deviates from simulations for
interacting active Brownian particles,37 whereas an analytical
theory that treats the active nature of these particles by using
effective temperatures shows that the common tangent method is
effective when the particles are dilute enough.38

Defining pressure is not trivial in these systems because the
active motion of these particles directly contributes to the pressure.

In contrast, the osmotic pressure in a DNA brush is generated by
the entropic elasticity of DNA chains and the interactions between
DNA chain segments when the concentration of RNAP is dilute
enough; the active motion of RNAP during transcription contri-
butes to the osmotic pressure only indirectly via the nucleosome
occupancy. Our theory assumes that the mechanical work to
change a small fraction of DNA chains from the swollen state to
the collapsed state (and vice versa) must be zero for the two states
to coexist, see eqn (17). This is probably true even for a non-
equilibrium steady state as long as DNA chains can take either of
the two states because there is no net flow from one state to the
other. The Maxwell construction might thus be effective to treat
the phase separation of a DNA brush to the first approximation.
It is of interest to find a general theoretical framework that predicts
phase separation in non-equilibrium steady states.
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