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Coarse-grained models have played an important role in the study of the behavior of DNA at length
scales beyond a few hundred base pairs. Traditionally, these models have relied on structurally featureless
and sequence-independent approaches, such as the twistable wormlike chain. However, research over the
past decade has highlighted the substantial impact of DNA sequence even at the kilobase pair scale. Several
robust sequence-dependent models have emerged, capturing intricacies at the base pair-step level. Here we
introduce an analytical framework for coarse-graining such models to lower resolution representations while
preserving essential structural and dynamic features, enabling the efficient sampling of large molecules. When
considering both rotational and translational degrees of freedom, coarse-graining is shown to yield excellent
results up to about one helical repeat. For scenarios where the local stretch modulus is inconsequential, this
range can be significantly increased by only considering the rotational degrees of freedom, which permits
faithful coarse-grained representation up to several helical repeats. Rather than providing a fully parametrized
model, we present the methodology and software necessary for mapping any base pair-step model to the desired
level of coarse-graining. Finally, we provide application examples of our method, including estimates of the
persistence length and effective torsional stiffness of DNA in a setup mimicking a freely orbiting tweezer, as
well as simulations of helically curved DNA.

DOI: 10.1103/PhysRevResearch.7.013044

I. INTRODUCTION

It is well established that the base sequence of DNA car-
ries significance beyond its encoding into amino acids and
the biochemical recognition of sequence motives via DNA-
binding proteins. Both structure and elasticity of individual
stretches of DNA have long since been shown to exhibit mod-
ulations vis-à-vis the underlying base pair sequence [1–3].
Such innate mechanical features constitute a rugged landscape
of mechanical resistance that favors particular deformations
at specific locations. For example, certain sequences display
pronounced intrinsic curvature, i.e., the curvilinear center
line is bent even in the absence of thermal fluctuations or
externally induced deformations [4–10]. Achieving a col-
lectively curved contour over a stretch of DNA is easiest
at places where the molecule is already naturally bent. At
these places adhering to the innate direction of curvature is
strongly favored. A prominent example is nucleosome posi-
tioning, i.e., the sequence preference for the wrapping of 147
base pairs around histone octamers in 1.7 superhelical turns.
Given the persistence length of roughly 150 bp the wrapping
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constitutes a significant elastic deformation. Consequently,
the consideration of structure and elasticity has been suc-
cessful in the theoretical evaluation of preferred nucleosome-
wrapped sequences [11–14].

At large length scales the elastic response of DNA is
well described by homogeneous semiflexible models and
in particular the wormlike chain (WLC) [15–19] or the
twistable wormlike chain (TWLC) when observables in-
volving torsional and topological properties are considered
[20–28]. However, even phenomena involving thousands of
base pairs may exhibit appreciable sequence-specific be-
havior. For example, Kim et al. [29] demonstrated that
DNA plectonemes tend to concentrate at specific sequence-
encoded locations, which may carry profound implications
for the spatial distribution of topological strain through-
out the chromosome. Understanding the sequence-specific
mechanical behavior of DNA may be crucial for compre-
hending the structural dynamics and functional fidelity of the
chromosome.

Despite rapid advancements, experimental methods pro-
viding resolutions that reveal sequence-specific dynamics
remain limited to date. Accordingly, the utility of molecular
simulations as effective computational microscopes remains
uncontested. Atomistic simulations have been successful in
replicating local mechanical properties of DNA [30–32],
and their application has been instrumental in unraveling a
multitude of phenomena involving both bare DNA [33–40]
and DNA-protein complexes [41–45]. However, the computa-
tional cost associated with this level of detail is prohibitive for
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the study of systems involving more than a few hundred base
pairs.

Implicit solvent simulations have significantly extended
the attainable length scale [46]; however, reaching the length
scales relevant to typical single-molecule experiments has
thus far only been possible through the development of
coarse-grained models. These models reduce the complexity
of DNA to the necessary components for the particular phe-
nomenon of interest, thereby reducing computational expense
which in turn enhances scalability. A large variety of such
models have emerged in recent years [47–53] some of which
feature structural and elastic sequence-dependence [54–57].

A particularly prevalent way of coarse-graining DNA is the
rigid base pair (RBP) model [58], which represents each base
pair as a single rigid body (see Fig. 1). Relative rotations and
translations between consecutive base pairs are parametrized
in terms of six degrees of freedom: three rotational (tilt, roll,
and twist) and three translational (shift, slide, and rise). In-
cidentally, these degrees of freedom coincide with the most
common way of classifying local elastic properties of DNA
[59–63]. In corresponding models, the sequence-dependent
intrinsic structure is included via the ground states of the six
respective degrees of freedom. Deformations away from this
ground state are commonly penalized with a quadratic elastic
energy [1,3,64–66]. This should be viewed as the lowest-order
expansion of a generic underlying elastic energy. Truncation
to quadratic order is warranted due to the stiff nature of
double-stranded DNA. A given parametrization of an RBP
model is fully characterized by a set of ground-state coordi-
nates and a stiffness matrix.

To obtain sufficient statistics on systems involving thou-
sands of base pairs the molecules under consideration are
frequently coarse-grained to significantly larger sub-units than
the basepair-step resolution of the RBP [25,27,28,67–69].
Not only do these coarser descriptions reduce the number of
degrees of freedom, but coarse-graining also reduces the stiff-
ness of the effective potentials, such that molecular dynamics
simulations may be executed with larger time-steps [25,50,69]
and Markov chain Monte Carlo simulations may feature larger
cluster moves [28,70,71].

Many studies rely on top-down parametrizations for
coarse-grained descriptions, that utilize the homogenous
TWLC model which has only two free parameters: the bend-
ing stiffness A and the twist stiffness C. These parameters are
usually adopted from experimental measurements or higher
resolution simulations, yielding a bending stiffness of about
40–55 nm [18,27,72–74] and a torsional stiffness in the range
of 60 to 110 nm [21,22,26,27,75–79] under physiological
ionic conditions. Sequence-dependent simulations of models
with subunits spanning several base pairs have been employed
in various studies [80,81]. However, the used bottom-up
parametrization required extensive all-atom molecular dy-
namics sampling for all considered sequences. Moreover,
there have been several works providing schemes for the ana-
lytical coarse-graining RBP parameters to TWLC parameters
[82–84]. While these approaches provide parametrizations
that yield good agreement with the collective behavior of
DNA molecules at large length scales, they are devoid
of the structural and dynamic sequence features outlined
before.

FIG. 1. Illustration of the rigid base pair description of DNA.
Base pairs—depicted in blue-red and yellow-green—are captured
by a single right-handed reference frame that captures the position
and orientation of the base pair. Relative orientations and positions
of adjacent base pairs are parametrized in terms of six-vectors (Xi)
consisting of three rotational and three translational parameters.

In this work, we present a systematic procedure for
coarse-graining elastic RBP models to any resolution. Coarse-
graining of rotational and translational degrees of freedom is
shown to be effective for resolutions up to a single helical
repeat. In contrast, focusing exclusively on rotational degrees
of freedom extends the accuracy of coarse-grained repre-
sentations which permits monomeric subunits spanning over
multiple helical repeats. The procedure entails a parameter
transformation into a self-similar system, where the functional
form of the model remains unchanged. It can be applied to any
set of RBP parameters such as, for example, those provided
by Olson et al. [1], Lankaš et al. [3] or Sharma et al. [65]
(cgNA+, which is technically a superset Model of the RBP as
it resolves rigid bases and rigid phosphate groups).

The article is structured as follows: The first half is ded-
icated to the description of the model and the development
of the coarse-graining procedure. Section II A introduces the
RBP model framework and casts the model in the form
that is most convenient for the coarse-graining procedure.
The coarse-graining scheme is detailed in Sec. II B, and the
specifics of the parameter transformation are provided in
Sec. II C. A Python implementation for the parameter trans-
formation is available at Ref. [85].

The second half of the paper presents various benchmark
results assessing the effectiveness of the coarse-graining pro-
cedure. Section III A examines how well the coarse-grained
system replicates individual distributions within unrestrained
ensembles. Section III B discusses the accuracy of reproduc-
ing length-scale-dependent persistence lengths. Additionally,
we simulate a freely orbiting magnetic tweezer setup for an
experimentally studied sequence in Sec. III C, and analyze the
behavior and response of helically curved DNA sequences in
Sec. III D. Finally, the paper concludes by summarizing the
observations, reflecting on the potential impact of the work,
and discussing its potential applications.
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II. THEORY

A. Rigid base pair model

In the rigid base pair description of DNA, each base pair is
treated as a rigid body associated with a couple (T , r), cap-
turing its orientation and position, respectively. Triads T are
right-handed reference frames that reflect the local geometry
of the base pair in question, i.e., the orientation of the quasi-
planar Watson-Crick base pairs, and the location of groves and
backbones relative to the center of mass of the respective base
pair. While exact definitions may vary across different conven-
tions, most implementations—based on atomistic [62,63,86]
and coarse-grained descriptions [56,87,88]—seek to generally
encapsulate these geometric features. Throughout this work,
we will define the three orthonormal basis vectors of each
right-handed frame to populate the columns of the triad

T = [ û v̂ t̂ ], (1)

such that global transformations act on triads in the same
way as on any ordinary vector. Following standard convention
[60], t̂ is associated with the normal of the base pair plane
(which for Watson-Crick base pairs is closely aligned with the
curvilinear tangent of the molecule), û roughly points from the
base pair center of mass to the major groove, and v̂ is closely
aligned with the vector connecting the two backbones. Note
that this definition classifies triads as elements of the rotation
group, SO(3).

Relative rotations and translations between adjacent base
pairs may be expressed in terms of six parameters—three
rotational and three translational. When considering neighbor-
ing base pairs these components are commonly referred to as
tilt, roll, and twist—for the rotational components—and shift,
slide, and rise—for the translational components. To express
these components independently of the global orientation of
the molecule as a whole, relative rotations and translations are
expressed in terms of the local material frame. The orientation
of triad Ti+1 with respect to the frame of triads Ti is given by

Ri = T ᵀ
i Ti+1. (2)

These transformations between adjacent frames will occasion-
ally be referred to as junctions or junction transformations.
For this work, we will employ a definition of tilt, roll, and
twist as the components of the rotation vector � also known
as Euler vector—associated with the rotation matrix R. The
relationship between the rotation matrices and rotation vectors
is provided by the Euler map, which is explicitly given by
Rodrigues’ rotation formula (see Appendix A) or equivalently
by the exponential map

Ri = exp �̂i, (3)

where exp indicates the matrix exponential and the antisym-
metric generators of rotation

�̂ =
⎛⎝ 0 −�t �v

�t 0 −�u

−�v �u 0

⎞⎠, (4)

are elements of the Lie algebra so(3). The components �u,
�v , �t —tilt, roll, and twist, respectively—are simply the
entries of the rotation vector �ᵀ = (�u �v �t ). Hence,

there is a one-to-one correspondence between rotation gener-
ators [so(3)] and rotation vectors (R3),

hat(�) = �̂, and vec(�̂) = �, (5)

which we will refer to as hat-map and vector-map, respec-
tively. An important relationship is that under the action of
the vector map the lie bracket of so(3) turns into the cross-
product,

vec([�̂1, �̂2]) = �1 × �2 = �̂1�2, (6)

where �1 and �2 are arbitrary rotation vectors. A commonly
employed alternative [58,64,65,89–91] to the Euler-map is
the Cayley map—also called the Euler-Rodrigues formula—
which is closely related to the definition of unit quaternions.
In Appendix B we show how ground state and Gaussian
elasticity, i.e., the stiffness matrix, can be transformed from
the Cayley definition to the Euler definition and vice versa.

Frequently, translations are expressed in the coordinate
system of midstep triads, which enables a definition for
translations independent of the choice of reference strand
[60,62,63]. However, for the coarse-graining procedure out-
lined further below, it is advantageous to depart from this
invariance and instead express relative translations within the
frame of the first triad in each respective pair,

wi = T ᵀ
i (ri+1 − ri ). (7)

Despite the deviation from common convention, we will
continue to refer to the translational components as shift,
slide, and rise. Transformation of structure and elasticity from
midstep- to triad-definition is discussed in Appendix D.

Orientations and translations of triads may be cast in a uni-
fied representation within elements of the special Euclidean
group [82], SE(3),

τi =
(
Ti ri

0ᵀ 1

)
, (8)

where 0 is the three-dimensional null vector. Junction trans-
formations then naturally contain the previously introduced
rotation matrix and translation vector

gi ≡ τ−1
i τi+1 =

(
T ᵀ

i Ti+1 T ᵀ
i (ri+1 − ri )

0ᵀ 1

)

=
(

exp �̂i wi

0ᵀ 1

)
, (9)

and are therefore parametrized by six-component vectors,

Xᵀ
i = (

�
ᵀ
i wᵀ

i

)
. (10)

For convenience, we introduce a map between transforma-
tions gi and the corresponding parametrization vector,

Xi ≡ P (gi ). (11)

The ground state of a particular molecule, which we also
refer to as its structure, is characterized by certain sequence-
specific junctions,

si ≡
(
Si si

0ᵀ 1

)
=
(

exp �̂0,i si

0ᵀ 1

)
, (12)
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where the sequence-dependent �̂0,i and si are provided by the
chosen RBP parameter set.

Intrinsic bending and intrinsic twist are encoded in the
static rotational parameters �0 while intrinsic translations,
among which intrinsic rise is the most prominent, are con-
tained in si. Together these components are summarized in the
ground-state vector

Xᵀ
0,i ≡ Pᵀ(si) = (

�
ᵀ
0,i sᵀi

)
. (13)

Static and dynamic components—fluctuations away from
the ground state—are usually distinguished by splitting the
junction six-vectors, Eq. (11), into the respective components

Xi = X0,i + X�,i, (14)

where X�,i is the dynamic component.
However, for this work, it turns out to be a more prudent

choice to split static and dynamic components at the transfor-
mation level rather than the vector level. This implies splitting
the junctions gi into static components si and a dynamic com-
ponents di as

gi = sidi, (15)

with

di ≡
(
Di di

0ᵀ 1

)
=
(

exp �̂�,i di

0ᵀ 1

)
. (16)

To differentiate from the commonly used definition of fluc-
tuations as the excess part of a single vector, we introduce a
distinct notation for the components within our definition:

Y0,i ≡ Pᵀ(si) = (
�

ᵀ
0,i sᵀi

)
, (17)

Y�,i ≡ Pᵀ(di ) = (
�

ᵀ
�,i dᵀ

i

)
. (18)

The static component is, of course, independent of the defini-
tion of fluctuations such that

Y0,i = X0,i, (19)

i.e., �0,i = �0,i.
To fully capture the state of a given molecule contain-

ing say N + 1 base pairs and N junctions, we introduce the
system-wide static and dynamic state-vectors,

Ȳᵀ
0 ≡ (

Yᵀ
0,0 Yᵀ

0,1 . . . Yᵀ
0,N−1

) ∈ R6N , (20)

Ȳᵀ
� ≡ (

Yᵀ
�,0 Yᵀ

�,1 . . . Yᵀ
�,N−1

) ∈ R6N . (21)

Fluctuations of the molecule away from its ground state,
i.e., nonzero values of Ȳ�, are characterized by an elastic
Hamiltonian H(Ȳ�). Since double-stranded DNA is a rather
stiff molecule and fluctuations at the base pair-step level are
generally small, it is customary to consider the lowest non-
trivial order expansion of H(Ȳ�), which takes the shape of a
quadratic form [1,3,58],

βH(Ȳ�) = 1
2 Ȳᵀ

�MȲȲ�, (22)

where MȲ is a 6N × 6N stiffness matrix and the inverse tem-
perature β = 1/kBT is assumed to be absorbed in the entries
of the stiffness matrix. The exact entries of this stiffness ma-
trix again depend on the chosen RBP parameter set. Unless the
elasticity is assumed to be homogenous, this stiffness matrix

FIG. 2. Illustration of the coarse-graining scheme for k = 3.
The original chain of base pair reference frames is decimated
such that only one in three triads is retained. Deformations of the
coarse-grained system are expressed in terms of the junctions Y(k)

�,q

connecting the remaining reference frames. These composite junc-
tions each account for the accumulative fluctuation of three original
junctions.

will depend on the exact underlying sequence. Most stud-
ies define these stiffness matrices for deformations in the X
definition [1,3,65]. The transformation of the stiffness matrix
between the X and the Y definition of deformations can be
carried out analytically by linearizing the transformation. A
detailed discussion of this approach is given in Appendix C.

Finally, we note that in many studies the elastic energy is
assumed to be local, i.e., fluctuations between distinct junc-
tions are fully decoupled [1,3]. In this case, the elastic energy
simplifies to

βH(Ȳ�) = 1

2

N−1∑
i=0

Yᵀ
�,iMYi Y�,i, (23)

with MYi the individual 6 × 6 base pair-step stiffness matri-
ces, which can usually be constructed from the 16 canonical
dimers (of which only 10 are truly unique [1,3]). Previous
work, however, has shown, that the assumption of elastic
locality is not satisfied within the framework of the rigid base
pair description [58,83,84,86,87,92,93] and that neighbor-
couplings have to be considered to appropriately capture the
long-range elastic properties [83,94]. Whether these couplings
imply physical interactions spanning across such lengths or
whether they are mere artifacts introduced by the marginaliza-
tion process from underlying higher resolution descriptions, is
still debated [58,95]. Regardless of the origin of the couplings,
they incontrovertibly have to be considered if the correct
large-scale elastic behavior is sought to be captured. The
coarse-graining procedure outlined in the next section natu-
rally incorporates any such couplings (if present), since it is
based on the most general (Gaussian) model, Eq. (22), which
may in principle feature couplings at all length scales.

B. Coarse-graining scheme

We propose a k-step coarse-graining scheme that splits
the chain into groups of k triads and then eliminates all
but the first triad in each group as is illustrated in Fig. 2
for the case of k = 3. The new—coarse-grained—junctions
connect the remaining triads and therefore span over k of the
original junctions. This effectively corresponds to a k-fold
increase in the discretization length. Assuming the original
molecule to contain N = N (k)k + 1 base pairs, the coarse-
graining scheme reduces the system to the set of N (k) + 1
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triads {τ0, τk, · · · , τ(N (k)−1)k, τN (k)k} connected by the k-step
junctions

g(k)
q = τ−1

qk τ(q+1)k, (24)

with q ∈ {0 . . . (N (k) − 1)}. Following the same definition as
in the base pair-step case, these junctions factor into static and
dynamic components

g(k)
q = s(k)

q d (k)
q , (25)

each of which is associated with coarse-grained static and
dynamic parameters

Y(k)
0,q ≡ P

(
s(k)

q

)
, (26)

Y(k)
�,q ≡ P

(
d (k)

q

)
. (27)

Analogously, to the original system, the entire state of the
reduced system is captured by the system-wide static and
dynamics state-vectors Ȳ(k)

0 and Ȳ(k)
� [see Eqs. (20) and (21)].

This coarse-graining scheme is reminiscent of the decimation
mapping from real space renormalization group theory [96].

The coarse-graining procedure itself consists of identifying
the coarse-grained ground state Ȳ(k)

0 and the coarse-grained
Hamiltonian H(Ȳ(k)

� ). Calculation of the former is straightfor-
ward and will be shown further below. The latter should be
identified via the condition that the free energy of the system
has to remain unchanged under the transformation, which is
equivalent to requiring equal canonical partition functions

Z =
∫

dȲ�e−βH(Ȳ� ) =
∫

dȲ(k)
� e−βH(Ȳ(k)

� ). (28)

The main difficulty in the latter step stems from the require-
ment of finding a functional form for Ȳ(k)

� in terms of the
original degrees of freedom Ȳ�.

1. Composites

Junctions between two arbitrary frames, as considered in
Eq. (24), may be written as a product of the intermediate
junctions,

g[i, j] ≡
j∏

l=i

gl = τ−1
i τ j+1. (29)

For such composites, we make the explicit distinction between
the notation of composites which may be written as a product
(for transformations) or sum (for vectors) of all corresponding
intermediate junction elements, indicated by square bracket
subscripts [i, j], and those for which we do not a priori as-
sume a trivial junction element decomposition to be possible,
indicated by ordinary bracket subscripts (i, j). For example,
analogous to Eq. (9), there will be a generator of rotation �̂(i, j)

and a translation vector w(i, j), such that

g[i, j] =
(

exp �̂(i, j) w(i, j)

0ᵀ 1

)
. (30)

While the matrix g[i, j] is by definition a product of single
junction matrices, the composite vectors may generally not
be written as the sum of the single-junction vectors (�(i, j) �=∑ j

l=i �l and w(i, j) �= ∑ j
l=i wl ), i.e., they are nonadditive, ex-

cept for certain elect cases (e.g., when the tangents, t̂i, of all

FIG. 3. This example configuration consisting of seven triads
illustrates that the full state can be captured by a mixed set of original
and coarse-grained dynamic junction parameters. In this example,
a particular state of the system is fully parametrized by the set
{Y�,0, Y�,1, Y(k)

�,0, Y�,3, Y�,4, Y(k)
�,1} (assuming that the ground-state

components are also given).

frames are aligned). For the construction of composites, it is
most convenient to use the index range of the original junc-
tions (from i to j) rather than the index of the coarse-grained
junction q. Bear in mind, however, that the relationship

g(k)
q = g[qk,(q+1)k−1] (31)

is implied.

2. Coarse-grained ground state

The coarse-grained ground-state junctions may be written
as a product of the contained original junctions [see Eq. (12)]
which by employing the notation for accumulative transfor-
mations, Eq. (29), can be written as

s(k)
q = s[qk,(q+1)k−1] =

(q+1)k−1∏
l=qk

sl . (32)

The corresponding ground-state vector is then simply

Y(k)
0,q = P

(
s(k)

q

)
. (33)

3. Coarse-grained Hamiltonian

In general, the dynamic coarse-grained state vectors Ȳ(k)
�

are not simply a linear combination of the components of the
original dynamic state vectors Ȳ�. However, since fluctua-
tions are generally small, we argue that expansion to linear
order is warranted. The validity of this approximation will be
further justified in the result section below.

As a first step, we note that the state of the original system
can be equivalently captured if we substitute for each group
of original junctions, a single junction by the coarse-grained
junction Y(k)

�,q representing the respective group. For example,
a particular configuration of the system depicted in Fig. 3
can either be captured by the set of original deformations
{Y�,0, Y�,1, Y�,2, Y�,3, Y�,4, Y�,5} or equivalently by the
set {Y�,0, Y�,1, Y(k)

�,0, Y�,3, Y�,4, Y(k)
�,1}, where the elements

Y�,2 and Y�,5 are replaced by the coarse-grained junctions
Y(k)

�,0 and Y(k)
�,1, respectively.

Arranging all the coarse-grained components to the right,
this reformulated state vector takes the form

�̄
(k)
�

ᵀ = (
Ȳᵀ

�,rem Ȳ(k)
�

ᵀ)
, (34)
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where Ȳ�,rem contains all the remaining components, i.e., the
ones that have not been substituted. In the example depicted
in Fig. 3, Ȳ�,rem and Ȳ(k)

� are given by

Ȳᵀ
�,rem = (

Yᵀ
�,0 Yᵀ

�,1 Yᵀ
�,3 Yᵀ

�,4

)
, (35)

Ȳ(k)
�

ᵀ = (
Y(k)

�,0

ᵀ
Y(k)

�,1

ᵀ)
. (36)

Note that according to the aforementioned approximation
the transformation from Ȳ� to �̄

(k)
� is a change of basis and

there will, thus, be a linear transformation Ā(k) such that

�̄
(k)
� = Ā(k)Ȳ�. (37)

With this transformation in hand, we can transform the
elastic energy Eq. (22) in the partition function as

Z =
∫

dȲ�e− 1
2 Ȳᵀ

�MȲȲ�

=
∫

d�̄
(k)
�

det Ā(k)
e
− 1

2

(
Ā(k) −1

�̄
(k)
�

)ᵀ
MȲ

(
Ā(k) −1

�̄
(k)
�

)

=
∫

d�̄
(k)
� e− 1

2 �̄
(k)
�

ᵀ
M

�̄(k) �̄
(k)
� −log det Ā(k)

, (38)

where the the transformed stiffness matrix M�̄(k) is given by

M�̄(k) = (
Ā(k) −1)ᵀ

MȲ Ā(k) −1
, (39)

and (det Ā(k) )−1 is the Jacobian of the transformation.
All that is left to do to obtain the stiffness matrix M (k) of

the coarse-grained system is to integrate out the remaining
original degrees of freedom, Ȳ�,rem, which is equivalent to
marginalizing the stiffness matrix. This can, for example, be
achieved by taking the Schur complement [58,84,97] of the
matrix M�̄(k) with respect to Ȳ(k)

� . By construction, the result-
ing elastic energy of the coarse-grained system will again be
a quadratic form, i.e., it will have the same functional form as
the original system.

C. Composite transformation

In this section, we derive the composite transformation Ā(k)

from Eq. (37). The first step will be to express dynamic com-
posite vectors Y�,(i, j) in terms of the original dynamic vectors
{Y�,i, . . . , Y�, j}, and after proper expansion we identify the
linear transformation for single composites

Y�,(i, j) =
j∑

l=i

A(i, j)
l Y�,l . (40)

Finally, these transformations are combined to construct the
full system transformation Ā(k).

1. Dynamic composite

We seek to express the dynamic composites

d(i, j) =
(
D(i, j) d(i, j)

0ᵀ 1

)
, (41)

with D(i, j) = exp �̂�,(i, j), in terms of the single junction static
and dynamic components

si =
(
Si si

0ᵀ 1

)
, di =

(
Di di

0ᵀ 1

)
, (42)

where Si = exp �̂0,i, and Di = exp �̂�,i [see Eqs. (12), (19),
and (16)]. Using Eq. (25) we can write d(i, j) = s−1

[i, j]g[i, j] and
after working out the right-hand side explicitly in terms of the
components of Eqs. (42) one finds

D(i, j) = Sᵀ
[i, j]R[i, j], (43)

and

d(i, j) = Sᵀ
[i, j]w(i, j) − Sᵀ

[i, j]s(i, j)

= Sᵀ
[i, j]

j∑
l=i

(
l−1∏
m=i

(SmDm)(Sldl + sl )

)
−

j∑
l=i

Sᵀ
[l, j]sl .

(44)

We will calculate the rotational and translational components
of Y�,(i, j) separately, starting with the former.

2. Rotation

A straightforward calculation shows that Eq. (43) can be
rewritten as

D(i, j) =
j∏

l=i

(
Sᵀ

[l+1, j]Dl S[l+1, j]

)

=
j∏

l=i

exp(Sᵀ
[l+1, j]�̂�,lS[l+1, j] ), (45)

where the last equality follows directly from the properties of
matrix exponentials. To arrive at an expression for a single
rotation matrix comprising all the fluctuating components, we
make the approximation

D(i, j) ≈ exp

⎛⎝ j∑
l=i

Sᵀ
[l+1, j]�̂�,lS[l+1, j]

⎞⎠, (46)

which is equivalent to discarding all terms of higher than lin-
ear order in the respective series expansions (or equivalently,
ignoring all commutators in the Baker-Campbell-Hausdorff
formula). Such an expansion is justified, because we sepa-
rated the fluctuating components, which are assumed to be
small, from the static components that assume appreciable
values—especially intrinsic twist. This explains the uncon-
ventional choice of expressing the rigid base pair model in
Ȳ coordinates rather than the usual X̄ coordinates. The fluctu-
ational component of the composite step rotation matrix can
therefore be written as a sum of transformed—approximately
additive—generators

�̂′
�,l = Sᵀ

[l+1, j]�̂�,lS[l+1, j] = hat
(
Sᵀ

[l+1, j]��,l

)
, (47)

where the second equality follows from general properties of
rotation generators. Invoking the vector map, Eq. (5), shows
that these transformed and approximately additive rotation
vectors are obtained by rotating the original rotation vectors

�′
�,l = Sᵀ

[l+1, j]��,l . (48)

013044-6



SYSTEMATIC COARSE-GRAINING OF … PHYSICAL REVIEW RESEARCH 7, 013044 (2025)

Finally, summing over all the terms is Eq. (46) yields the
sought transformation for the rotational components

��,(i, j) ≈
j∑

l=i

Sᵀ
[l+1, j]��,l . (49)

3. Translation

To arrive at the expression for composite translations we
expand all occurrences of the rotation matrices D in Eq. (44)
to linear order

D = exp �̂� ≈ 1 + �̂�, (50)

which is again warranted as we assumed the components of
��,k to be small. Discarding all terms of higher than linear
order in any of the fluctuating components (both rotation and
translation), one eventually arrives at (see Appendix E for
details),

d(i, j) ≈
j−1∑
l=i

⎡⎣ j∑
m=l+1

hat
(
Sᵀ

[m, j]s
ᵀ
m

)
Sᵀ

[l+1, j]

⎤⎦��,l

+
j∑

l=i

Sᵀ
[l+1, j]dl . (51)

4. Constructing the linear transformation

Jointly, the results of Eqs. (49) and (51) may be summa-
rized in the form of the linear transformation Eq. (40), with

A(i, j)
l =

(
A(i, j)

l,rr 0

A(i, j)
l,rt A(i, j)

l,tt

)
(52)

and entries

A(i, j)
l,rr = Sᵀ

[l+1, j], (53)

A(i, j)
l,tt = Sᵀ

[l+1, j], (54)

A(i, j)
l,rt =

j∑
m=l+1

hat
(
Sᵀ

[m, j]s
ᵀ
m

)
Sᵀ

[l+1, j]. (55)

To determine the transformation Ā(k) from Eq. (37) we will
first construct the matrix of basis change that transforms dy-
namic state vectors spanning over a single compound, i.e.,
from junction i to junction j, from the original basis

Ỹᵀ
�,(i, j) = (

Yᵀ
�,i . . . Yᵀ

�, j−1 Yᵀ
�, j

)
, (56)

to the basis in which the last entry is substituted by the respec-
tive dynamic compound vector

�̃
ᵀ
�,(i, j) = (

Yᵀ
�,i . . . Yᵀ

�, j−1 Yᵀ
�,(i, j)

)
. (57)

This transformation takes the form

�̃�,(i, j) = A(i, j)Ỹ�,(i, j), (58)

with

A(i, j) =

⎛⎜⎜⎜⎜⎜⎝
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
A(i, j)

i A(i, j)
i+1 . . . A(i, j)

j−1 1

⎞⎟⎟⎟⎟⎟⎠. (59)

The right-most entry in the bottom row is identity since
A(i, j)

j = 1. The transformation of single compounds can be
extended to the entire system via the block-diagonal matrix

Ā′(k) =

⎛⎜⎜⎜⎝
A(0,k−1) 0 . . . 0

0 A(k,2k−1) . . . 0
...

...
. . .

...

0 0 . . . A([N (k)−1]k,N (k)k−1)

⎞⎟⎟⎟⎠.

(60)
Finally the Ā(k) from Eq. (37) is obtained by rearranging
the elements in Ā′(k) via a permutation that arranges all the
coarse-grained components to the back of the vector. This can
be achieved by invoking a permutation matrix P,

Ā(k) = PĀ′(k). (61)

Since Ā′(k) is a block diagonal matrix with component blocks
A(i, j), each of which satisfying det A(i, j) = 1, the transforma-
tion matrix Ā(k) will also have unit determinant as per the
orthogonality of permutation matrices.

III. RESULTS AND DISCUSSION

In this section, we assess the fidelity of the coarse-graining
procedure by comparing various parameters sampled at dif-
ferent levels of coarse-graining. For this purpose a particular
RBP model has to be chosen that provides sequence-
dependent ground state and stiffness parameters. Throughout
this work, we relied on parameters provided by the cgNA+
model [65,98]. We then compare results sampled at the orig-
inal and coarse-grained resolutions. We emphasize that the
purpose is not to assess the quality of the used parameter set
but the agreement of the results obtained at different resolu-
tions.

Note, that cgNA+ extends the RBP model by incorpo-
rating additional degrees of freedom beyond the six base
pair-step parameters (tilt, roll, twist, shift, slide, and rise).
Specifically, it treats bases and phosphate groups as rigid bod-
ies, resulting in an additional six intra-base pair parameters
(buckle, propeller, opening, shear, stretch, and stagger), along
with six degrees of freedom encoding the orientation and
position of the phosphate group relative to the corresponding
base in each nucleotide. Stiffness matrices for the RBP model
are obtained by marginalizing these excess degrees of free-
dom, employing appropriate Schur complements as outlined
in previous work [58].

In the cgNA+ model, rotations are represented using the
Cayley map. However, our coarse-graining procedure neces-
sitates parameters expressed in terms of the Euler map. We
therefore transform the ground state and the stiffness matrices
to this representation (further details provided in Appendix B).
Our approach assumes translations between pairs of triads
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to be defined in the frame of the first triad of the respective
pair, while cgNA+ expresses translations in the correspond-
ing midstep frame. Additionally, as discussed in Sec. III A,
we segregate static and dynamic components of rotations and
translations at the transformation matrix level, rather than at
the corresponding vector level, as commonly done in RBP
models. To use the language and symbols introduced in this
work we require the system to be parametrized in terms
of Ȳ coordinates instead of the more common X̄ coordi-
nates. This transformation of the ground state and stiffness
from midstep triad to triad definition of translations, along
with the redefinition of fluctuating components, is achieved
via the transformations derived in Appendixes C and D.
The outcome is a set comprising the ground state and a
stiffness matrix (Ȳ0, MȲ), which are then transformed into
coarse-grained sets (Ȳ(k)

0 , M (k)
Ȳ

) using the scheme outlined
in Sec. II C 4.

A. Comparison with unrestrained Monte Carlo sampling

We first consider ensembles of unrestrained configurations
ranging over single composite steps for composite sizes k
ranging from 2 to 40. The analysis is based on a randomly gen-
erated 201 bp sequence [99] (containing N = 200 base pair
steps) for which we consider partial oligomers selected be-
tween indices 80 and 80 + k. The larger sequence context was
introduced to avoid boundary effects. We generated a sample
of 2.5 × 107 unrestrained configurations drawn according to
the canonical measure. Specifically, we drew Ȳ� ∈ R6N from
the multivariate Gaussian distribution

ρ(Ȳ�) =
(

det MȲ

(2π )6k

) 1
2

e− 1
2 Ȳᵀ

�MȲȲ�, (62)

where the inverse temperature β = (kBT )−1 is absorbed in
MȲ ∈ R6N×6N . Configurations of triads are then generated
by starting from a given first triad and iteratively applying
static and dynamic base pair step junction transformations
[see Eqs. (9), (12), (15), and (16)]. For each individual value
of k, we then considered the relative position and orienta-
tion of the triads τ80 and τ80+k encapsulated in the relative
transformation g(k) = τ−1

80 τ80+k . Using the known composite
ground-state transformation s(k) [see Eq. (32)] the dynamic
composite components Y(k)

� = P (d (k) ) are then found as the
parameters associated with the transformation

d (k) = s(k) −1
g(k) = s(k) −1

τ−1
0 τk . (63)

According to the assumption of approximate linearity of
the composite transformation, the six individual components
of Y(k)

� —for the sake of simplicity we will also call them
tilt, roll, twist, shift, slide, and rise—should be multivariate
Gaussian distributed. Histograms of the sampled values for
composites composed of 10 junctions (k = 10) are shown
in Fig. 4(a). For comparison, we coplot the distributions
resulting from our analytically coarse-grained stiffness ma-
trices M (k)

Ȳ
∈ R6×6. The variances of individual degrees of

freedom are obtained via marginalization. Following the con-
struction of the Y(k)

� as deviations away from the ground
state, their mean is assumed to be zero. Both the assump-
tion of Gaussianity and the agreement between sampled and

predicted distribution are excellent in most components, ex-
cept for the rise component, which exhibits pronounced
left-skewness. We attribute this broken symmetry to the
influence of bending fluctuation on the accumulative rise.
Analogous to the entropic spring behavior of flexible and
semiflexible polymers [16,19], local bending fluctuations re-
duce the end-to-end distance of a given oligomer; see Fig. 4(c)
and Ref. [39]. This effect diminishes the composite rise be-
tween its two end triads thereby imposing left-skewness on the
corresponding distribution. Accounting for this effect in the
coarse-grained representation would require the introduction
of cubic terms or higher-order in the elastic energy, which
could be achieved by a perturbative calculation. Such higher-
order treatment would significantly increase the complexity
of the parameter transformation and is beyond the scope of
this work.

For quantitative assessment we evaluated the variance,
mean, and skewness of the six components of Y(k)

� for all
considered values of k; shown in Figs. 4(d), 4(e), and 4(f),
respectively. To put differences in variance into perspective we
show relative differences between sampled and analytically
coarse-grained variances as given by

�varrel = varcg − varsampled

varsampled
. (64)

Since 〈Y(k)
� 〉 = 0 by construction of the coarse-graining proce-

dure, only the sampled mean values are displayed. Likewise,
the analytical coarse-graining is constructed as a linear trans-
formation which transforms the original Gaussian system into
another Gaussian system. Therefore, the third central moment
of the transformed system is assumed to be zero. Omitted
higher-order contributions may lead to nonvanishing third
central moments. Figure 4(f) shows the normalized sampled
third central moments

μ̃3 = 〈(x − 〈x〉)3〉
〈(x − 〈x〉)2〉3/2

, (65)

which is sometimes referred to as Fisher’s moment coefficient
of skewness.

Rotational degrees of freedom display excellent agree-
ment between sampled and predicted values, with relative
differences in the variance of less than 2.5% for the largest
considered coarse-graining size (k = 40). Mean and skewness
of these values is generally small, with only the mean of the
twist exhibiting increasing deviations, reaching about 0.58
deg for the largest considered coarse-graining size. This value
constitutes a mere 3% of the standard deviation of the twist
fluctuations at this level of coarse-graining.

Deviations between transformed and sampled distributions
are significantly larger for the translational degrees of free-
dom. While the relative difference in variance reaches about
20% for the two lateral components shift and slide, deviations
in rise compound to almost 100% for the largest considered
composite size. This large deviation stems from the aforemen-
tioned symmetry breaking in rise fluctuations that manifests
in appreciable left-skewness of the distribution. As a direct
consequence, one observes a lower mean and a significantly
larger variance.
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FIG. 4. Comparison between sampled distributions and those resulting from the analytical coarse-graining procedure. (a) Histograms for
the six degrees of freedom of a single 10-step composite. The black lines are normal distributions with variances taken from the diagonal entries
of the covariance matrix associated with the stiffness matrix of the coarse-grained system (the two matrices are related via matrix-inversion).
(b) Depiction of the coarse-grained system represented in panel (a). (c) An illustration of the reduction in composite rise due to thermal
bending fluctuations, which lead to the observed symmetry breaking in its distribution. Arrows indicate tangents; bending between consecutive
segments leads to a contraction of the end-to-end distance. (d) Relative difference between the variance resulting from the coarse-graining
procedure and the sampled variance according to Eq. (64) for values of k ranging from 2 to 40. Means and skewnesses [see Eq. (65)] of
the same distributions are displayed in panels (e) and (f), respectively. Transparent scatters in panels (d) and (e) correspond to Gaussian fits
centered at the value of maximum likelihood.

For closer comparison to the quadratic model, we fit the
sampled rise distribution with a Gaussian centered around the
most likely rise value (results shown as transparent scatters).
This way of comparison reveals discrepancies to be less se-
vere, especially for composite-step sizes up to k = 10.

B. Persistence lengths

The bending and torsional persistence lengths are the
canonical measures of DNA elasticity quantifying the me-
chanical response of the molecule at the mesoscale. There are
a variety of different definitions for the bending persistence
length [74]. Here we employ a definition based on the expo-
nential decay of the tangent-tangent correlation function [100]

Cb(m) = 〈̂tn · t̂n+m〉 = e− am
lb , (66)

where subscripts are the positional indices of the considered
tangents with m being the curvilinear distance expressed in

base pair-steps, and a is the discretization length, which we
set to a = 0.34 nm.

Regular exponential decay of the tangent-tangent correla-
tion function, as indicated in Eq. (66), is a behavior exhibited
only by semiflexible polymers characterized by purely local
elasticity [83]—which is, for example, the case for an elastic
Hamiltonian of the form given by Eq. (23) and no structural
features [92]. Previous work has shown that nonlocality in the
elastic energy, i.e., couplings between neighboring junctions
and beyond, give rise to a distinct length-scale dependence
of the elastic properties [83,92,93,101,102]. Moreover, in-
trinsic bending components are known to induce additional
deviations from the exponential behavior [92]. We, therefore,
employ a length-scale-dependent definition of the persistence
length based on Eq. (66), but evaluated for every m individu-
ally [87],

lb(m) = − am

log Cb(m)
. (67)
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FIG. 5. Persistence lengths of a 7922 bp sequence. (a) Sequence-averaged bending persistence length simulated at varying resolutions,
indicated by different scatter symbols. The solid line represents the persistence length calculated using the Trifanof–Tan–Harvey expression
[103], Eq. (70), based on separately calculated dynamic (b) and static (c) persistence lengths. (d) Sequence-averaged torsional persistence
length calculated from the same simulations as in panel (a). (e) Sequence-specific persistence lengths obtained by sliding the reference tangent
[n in Eq. (66)] through the 7922 bp molecule, calculated at a fixed base pair-step distance m = 100. (f) Histogram of the values shown in panel
(e). (g) Cross-correlation plots between persistence lengths calculated at single base pair and coarse-grained resolutions (2, 5, 10, and 20 bp,
respectively).

Analogous to Eq. (66) the twist-elasticity is characterized
by the twist-correlation function [83]

Ct (m) =
〈

cos

(
n+m−1∑

i=n

[��,i]3

)〉
= e− am

lt , (68)

where [��,i]3 is the third component of the excess rotation
��,i. The associated decay length, the torsional persistence
length lt , is related to the torsional stiffness by a factor of two:
lt = 2C [50]. Equation (68) again only holds for twist-storing
polymers with purely local elastic couplings. Nonlocality of
the elastic energy breaks the monotonous decay of the twist-
correlation function and introduces length-scale dependence,
warranting a local definition analogous to the expression for
the bending persistence length

lt (m) = − am

log Ct (m)
. (69)

To highlight the utility of the coarse-graining procedure,
we compare the original base pair resolution model to coarse-
grained parametrizations of various resolutions. In particular,
we considered composites spanning 5, 10, 21, and 42 base
pairs, corresponding to roughly half, one, two, and four helical
repeats, respectively.

We first consider the sequence-averaged length-scale-
dependent persistence lengths of a 7922 base pair sequence
that has been employed in various experimental single-
molecule studies [22,27,104]. In this context, the expectation

brackets in Eq. (66) indicate simultaneous thermal and se-
quence averages, i.e., the expression is averaged over all
possible reference indices n, provided that the molecule con-
tains at least n + m base pairs. Following the procedure
introduced in the previous section, we generated 108 inde-
pendent configurations for each resolution (i.e., for each value
of k).

Length-scale-dependent bending persistence lengths for
base pair-step distances (m) ranging from 1 to 100 are
displayed in Fig. 5(a). Consistent with previously reported
findings, the simulation at base pair resolution (k = 1), ex-
hibits low persistence, i.e., enhanced flexibility, at short
distances (small m) while asymptotically converging to-
wards larger stiffness for large m [83,84,87,92,101,102,105].
Moreover, the behavior of lb(m) is further modulated by
a sinusoidal oscillation of wavelength corresponding to the
helical repeat length (approximately 10.5 bp). This is a conse-
quence of the base pair planes being slightly tilted on average
relative to the helical axis (see, for example, Ref. [92]).
Asymptotically, lb(m) converges to about 69 nm. While this
value is significantly larger than the literature values of 40–55
nm, it is in line with previous studies reporting on the persis-
tence length of cgNA+ [98,102] and similar to values found
with atomistic simulations [83] conducted with the parmbsc1
forcefield [30] based on which cgNA+ is parametrized.

We emphasize again that this section is not intended to
assess the accuracy of the underlying RBP parametrization,
but rather to validate the fidelity of the methodology in
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reproducing configurational fluctuations at the coarse-grained
level. As depicted in Fig. 5(a), the coarse-grained parametriza-
tions yield persistence length values that closely align
with those of the original single base pair resolution
model.

According to a heuristic argument due to Trifanof–Tan–
Harvey [103] the bending persistence length may be expressed
in terms of static and dynamic components, ls and ld , respec-
tively, as

1

lb
= 1

ls
+ 1

ld
. (70)

We tested the validity of this expression by calculating ls
and ld independently. The dynamic persistence length ld is
obtained by running the Monte Carlo simulations with static
components set to zero and then applying Eq. (67) to the
generated ensemble of configurations [see Fig. 5(b)]. The
static persistence length ls, shown in Fig. 5(c), is obtained
by applying the definition Eq. (67) to the static ground state
of the 7922 base pair molecule. Constructing the bending
persistence length according to Eq. (70) yields values very
close to the ones found by the full simulations [see solid gray
line in Fig. 5(a)].

The values of the twist-persistence length [see Fig. 5(d)]
exhibit less agreement between simulations at different
resolutions: at base pair resolution lt (m) converges to ap-
proximately 250 nm (C ≈ 125 nm), whereas at lower
resolutions lt (m) converges to somewhat larger values (C ≈
135–140 nm). We propose that these discrepancies do not
arise from intrinsic deficiencies in the coarse-graining proce-
dure, but rather from an inaccurate definition of twist as the
third component of the junction rotation vector. For twist to be
additive, it should quantify rotation around the helical axis of
the molecule. However, due to fluctuations in the tangents of
the reference frame away from the molecular center line and
helical variations in base planes, twist fluctuations at larger
length scales are influenced by geometric and topological
features [106]. This point will be further illustrated in the
following section.

Finally, we investigated the extent to which the coarse-
graining methodology captures the sequence-specificity of the
bending persistence length. To achieve this, we calculated
the persistence length over individual segments of the same
7922 base pair sequence. Specifically, we evaluated Eq. (67)
for fixed reference points n = 0, 10, 20, . . . , 7820, at distance
m = 100, which we assume to be close to the asymptotic
value. As depicted in Fig. 5(e) the persistence length is found
to exhibit appreciable positional dependence. This variability
is further illustrated in the distribution of individual values;
see histogram, Fig. 5(f). To directly compare the results at
different resolutions with those obtained at single base pair
resolution, we generated cross-correlation plots for coarse-
grained resolutions of 2, 5, 10, and 20 base pairs, as depicted
in Fig. 5(g). These plots demonstrate the near-perfect agree-
ment between the results at various resolutions and highlight
the efficacy of the coarse-graining methodology in capturing
detailed sequence-dependent features.

C. Force extension and effective torsional stiffness

As an example for simulations more closely related to
experiments, we consider the setup of freely orbiting magnetic
tweezers (FOMT) [73] [see Fig. 6(a)]. In such experiments,
a single double-stranded DNA molecule is tethered between
a flow cell surface and a superparamagnetic magnetic bead.
Linear stretching forces f can be applied to the DNA tether
by proxy of exposing the bead to magnetic field gradients
induced by a magnet located above the bead.

First, we will summarize the theory essential for rational-
izing the experimental readout and extracting bending and
torsional properties. Following this, we present the results
obtained from extensive Monte Carlo simulations sampled at
various resolutions.

1. Force extension

Measurement of the hovering height of the bead rela-
tive to the surface gives access to the instantaneous tether
extension z. Elongation of the molecule is opposed by an
accompanying loss in entropy, which results in a characteris-
tic force-dependent equilibrium. For sufficiently large forces
( f � 0.3 pN) small fluctuation theory provides a simple ex-
pression for the mean extension 〈z〉 in terms of force f , tether
length L, and the bending persistence length lb [19,20],

〈z〉
L

= 1 − 1

2

√
kBT

lb f
+ h.o., (71)

where h.o. indicates higher order corrections.
To cover the full range of forces, several interpolation for-

mulas that continuously connect the response at large forces
to the behavior of ideal flexible polymers at low forces have
been brought forward [19,107]. The first and possibly simplest
of these was suggested by Marko and Siggia [19]

lb f

kBT
= 〈z〉

L
+ 1

4(1 − 〈z〉/L)2 − 1

4
. (72)

Equations (71) and (72) allow for the fitting of the bending
persistence length based on measured force-extension data.

2. Effective torsional stiffness

Suitable positioning of the magnet allows for the mon-
itoring of rotations of the bead around the force director
field (for details see Ref. [73]). Effectively, this gives ac-
cess to the torsional fluctuations of the molecule as a whole,
which can be applied to assess the molecule’s innate torsional
properties. However, rotation of the bead, or equivalently the
molecular terminus, does not translate into an equal amount
of accumulative twist strain distributed over the molecular
contour. Instead, a part of the torsional strain will be absorbed
in the form of writhe [108], which, simply put, is a form
of chiral bending. As long as the total torsional strain is
small and the extending force sufficiently large [21,109,110],
writhe manifests in small helical fluctuations around the
fully extended state. Beyond a certain force-dependent thresh-
old torsional strain, these fluctuations compound to initiate
a buckling transition, which leads part of the molecule
to wrap around itself in superhelical conformations called
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FIG. 6. Monte Carlo simulations of freely orbiting magnetic tweezer setup. (a) An illustration of a freely orbiting magnetic tweezer. (b), (c)
Comparison of force-extension (b) and the effective torsional stiffness (c) for simulations of 7.9 kb molecules for three different resolutions.
The underlying energy for these simulations only contains the rotational degrees of freedom tilt, roll, and twist and keeps the discretization
length constant. Relative differences between the coarse-grained results from the single base pair-step resolution simulations are highlighted in
the insets. The curved dashed line in panel (b) represents the interpolation formula, Eq. (72), using a value of lb = 68.4 ± 0.2 nm obtained by
fitting Eq. (71) to the 1 bp resolution data for forces exceeding 0.3 pN. The horizontal dashed line indicates the length of the molecule, marking
the maximum tether extension. In panel (c), the curved dashed line represents a fit of Eq. (74) to the 10 bp resolution data again for forces
larger than 0.3 pN. Here, the horizontal dashed line indicates the fitted value of C, which is asymptotically approached by Ceff at large forces.
The x-scatter points represent direct torsional stiffness C measurements, calculated from the total twist fluctuations according to Eq. (76).
(d)–(g) 2 kb simulations including the translational degrees of freedom shift, slide, and rise. Data corresponding to the 1 bp resolution are
shown in purple and those corresponding to 10 bp resolution are shown in blue. Panels (e) and (g) show probability distributions of extension
and rotation angle θ , respectively, for two forces. The solid purple and dashed blue lines show the distributions observed for single-base pair
and 10-base pair resolutions simulations, respectively.

plectonemes [28,109,111,112]. In this section, we are only
interested in the former regime.

Absorption of torsional strain into writhe results in an
effectively reduced torsional stiffness—usually referred to as
effective torsional stiffness Ceff—relative to the angular fluc-
tuations of the molecular termini [69],

〈�θ2〉 = L

Ceff
, (73)

where θ is the total angle traced out by the magnetic bead
which is equal to the torsional fluctuation of the molecular
endpoint. At low forces, writhe fluctuations are appreciable,
leading to values of Ceff that are significantly lower than
DNA’s innate torsional stiffness C. Conversely, at large forces,
bending fluctuations are largely suppressed, such that rota-
tions of the magnetic bead are predominantly dictated by
the torsional stiffness of the molecule. Moroz and Nelson
showed that in the large force regime (once again f � 0.3 pN
for literature values of DNA elastic parameters) the effective

torsional stiffness can be expanded as [21,76]

Ceff = C − C2

4lb

√
kBT

lb f
+ h.o. (74)

Theoretical treatment in the low-force regime is also possible
[113,114], albeit not in closed form. However, such analysis
is beyond the scope of this work.

3. Limitations arising due to external forces

The coarse-graining procedure eliminates junctions by in-
tegrating out the corresponding degrees of freedom assuming
them to be freely fluctuating. This assumption is violated
by the application of external forces, which constitute ef-
fective constraints on the junction degrees of freedom. In
principle, one would have to consider these constraints when
carrying out the integration. However, linear stretching forces
couple strongest to large length scale fluctuations while per-
turbing local junction fluctuations to much lesser degree
[110,115]. This observation is conveniently expressed in the
high force correlation length of lateral fluctuations [19], i.e.,
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perpendicular to the force-director field,

ξ =
√

kBT lb
f

, (75)

which provides the length scale beyond which bending fluc-
tuations are appreciably attenuated by the force. If the size of
the composite segments exceeds this correlation length, then
fluctuations within each such segment may no longer be as-
sumed to be freely fluctuating, rendering the coarse-graining
approach inadequate for accurately capturing the system’s
fluctuations. Conversely, for a given composite segment size,
Eq. (75) provides an estimate for the upper limit of the appli-
cable force range. For a persistence length of lb = 50 nm and
composite segments spanning 10 bp, this upper force limit is
about 18 pN.

4. Monte Carlo simulations

We simulated the FOMT setup for the same 7.9 kb se-
quence [22,27,104] used for the calculation of persistence
lengths using the Markov chain Monte Carlo method previ-
ously employed in the study of DNA plectonemes [27,28]
(for more information see also Supplemental Material of
Ref. [27]; code available at Ref. [116]). The underlying en-
ergetic model is identical to the RBP description discussed
here, with the limitation that it only considers rotational fluc-
tuations, assumes a constant discretization length, and no
lateral translational components at the single junction level.
We supplement the crankshaft and modified-pivot moves used
in these works with a pivot move that allows for rotations of
the terminal triad around its tangent. The orientation of this
tangent remains constant and aligned with the force director
field throughout the simulation, such that tracing the lateral
triad vectors [̂u and v̂ from Eq. (1)] gives direct access to
the global torsional angle θ . Note that this procedure requires
strand-crossing moves to be rejected since they would allow
for the relaxation of torsional strain by other means than the
rotation of the terminal triad. Moreover, the magnetic bead
and the flow cell surface are explicitly considered in the
form of two impenetrable surfaces anchored at the termini
to avoid linking number changes via crossings beyond these
termini.

We considered three separate resolutions, the original base
pair-step parametrization, and coarse-grained representations
at the 5 and 10 bp level (k = 5 and k = 10). Coarse-graining
to 5 and 10 bp resolutions resulted in approximately four-
fold and sixfold speedups of the MC simulation, respectively.
Additionally, the sampling efficiency of the lower-resolution
simulations is further enhanced by enabling larger MC moves,
which enables the exploration of the configurational phase
space with fewer such moves.

5. Force extension curves for 7.9 kb MC simulations

Force extension curves for these three respective resolu-
tions and forces ranging from 0.01 pN to 83 pN are shown in
Fig. 6(b). We note that double-stranded B-DNA undergoes an
overstretching transition at about 65 pN [117]. However, the
considered harmonic model does not feature such a transition,
allowing for the application of larger forces. We include forces

beyond this point to illustrate that at large forces fluctuations
of the coarse-grained system increasingly diverge from those
of the original system as discussed above [see the discussion
around Eq. (75)].

Base pair-step resolution extensions are faithfully repro-
duced by the coarse-grained simulations to the point that
extension curves are visually indistinguishable. Closer in-
spection reveals relative differences to remain below 1% [see
inset of Fig. 6(b)]. Relative differences exhibit an increasing
tendency for large forces past a certain resolution-dependent
threshold. This observation is in line with the discussion about
the force-mediated suppression of lateral fluctuations as wave-
lengths below the respective discretization lengths commence
to be attenuated by the stretching force. As expected, the
threshold force is the lowest for the 10 bp resolution simula-
tions. Calculation of the apparent persistence length via fitting
of Eq. (71) for forces larger than 0.3 pN yields lb = 68.4 ± 0.2
nm for the original resolution simulation. This value is in
excellent agreement with the asymptotic persistence length
calculated via the tangent-tangent correlation function. Fitting
of the coarse-grained data yields slightly lower values: lb =
67.7 ± 0.3 nm for the 5 bp resolution and lb = 65.3 ± 0.4
nm for the 10 bp resolution. Remarkably, imposing an upper
limit on the force range used for the fit recovers the base pair
resolution persistence length. We find lb = 68.3 ± 0.1 pN at
10 bp resolution when only considering forces lower than
1 pN and lb = 68.4 ± 0.2 pN at 5 bp resolution when only
considering forces lower than 30 pN. Again these findings
are in line with the permeation of force-induced suppression
of lateral fluctuations below the length scale of the coarse-
graining resolution. The dashed line in Fig. 6(b) is a plot
of the interpolation formula Eq. (72) using the value of the
persistence length deduced from the high force fit (for the 1
bp resolution). Clearly, Eq. (72) is not a good representation
of the observed extension behavior for low forces as it predicts
convergence to zero extension, while the simulations converge
to a finite value. The low force behavior of Eq. (72) is valid for
ideal flexible polymers, i.e., for non-self-avoiding polymers,
and in the absence of the repulsion planes. In particular, the
presence of the latter breaks the symmetry of the distribution
at zero force thereby necessitating a positive and distinctly
nonzero mean extension.

6. Effective torsional stiffness for 7.9 kb MC simulations

Values for Ceff calculated from the same simulations are
displayed in Fig. 6(c). Once again, the agreement between
base pair-resolution and coarse-grained simulations is excel-
lent with relative differences not exceeding 2.5% [except for
a single point; see inset of Fig. 6(c)]. Fitting of the 1 bp
data for forces larger than 0.3 pN to Eq. (74) yields C =
139.8 ± 0.3 pN and lb = 67.2 ± 0.8 pN. This value of C,
which may be viewed as the high-force asymptote of Ceff , is
indicated by the horizontal dashed line in Fig. 6(c). Quite re-
markably, it agrees well with the direct measurements via the
asymptotic long length-scale torsional persistence length for
the coarse-grained representations calculated in the previous
section (especially the 42 and 21 bp resolutions) but much
less so with the results of the base pair-resolution model. The
FOMT simulations give direct access to the twist fluctuations,
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FIG. 7. Simulations with superhelically curved sequences. Panels (a) and (b) depict the top and side view of the ground state of the
phased A-tract sequences CAAAATTTTG [118] and the phased sequence CGGGGGCTTTTAGGGGGCTTTTAGGGGGCTTT, respectively.
(c) Comparison of the length-scale-dependent bending persistence lengths for the two superhelical sequences and the previously considered
experimental sequence [22]. Force-extension and effective torsional stiffness data sampled with the FOMT setup for the same sequences are
shown in panels (d) and (e), respectively.

which can then be related to the torsional stiffness via

〈�Tw2〉 = L

4π2C
. (76)

The resulting values of C [x-scatters in Fig. 6(c)] are indepen-
dent of the force, as expected since there is no direct coupling
between force and twist. Moreover, direct calculations of C
stemming from the coarse-grained simulations closely align
with the previously indicated asymptote (horizontal dashed
line), while the base pair-resolution data underestimates the
torsional stiffness. We conclude that the appropriate value
for the torsional stiffness (for the cgNA+ provided RBP
parametrization) is about 140 nm.

Fitting of the coarse-grained simulations to Eq. (74) yields
almost the same values as the 1 bp resolution simulations.
At 10 bp resolution we find C = 138.4 ± 0.4 pN, and lb =
66.5 ± 0.3 pN, while the 5 bp resolution simulations yield
C = 138.2 ± 0.3 pN, and lb = 66.0 ± 0.7 pN. Reducing the
force range used for the fit again slightly increases the ob-
tained estimates for lb.

7. Inclusion of translational degrees of freedom—
2 kb MC simulations

For the inclusion of the translational degrees of freedom
in the simulations, we used a Python implementation of the
MC package (available at Ref. [120]). However, its current
limitations in computational efficiency made the generation
of appreciable statistics for the 7.9 bp sequence unattainable.
Therefore we limited the simulations to a 2 kb sequence taken

as the first 2 kb fragment of the 7.9 kb sequence. Force-
extension curves [Fig. 6(d)] and values of Ceff [Fig. 6(f)]
remain in reasonable agreement across 1 bp and 10 bp
resolution simulations. Closer inspection reveals systematic
discrepancies of the extension at large forces, where the dis-
tribution of z values is markedly shifted to the upside for the
coarse-grained representation [see Fig. 6(e)]. This observation
aligns with the prior observed pathology arising from the
coarse-graining of the rise. The coarse-graining procedure
systematically overestimates composite rise components by
not accounting for the emergent asymmetry of composite-
step rise distributions [see Figs 4(a) and 4(d)]. Note that
the extension shift is approximately the same for all forces,
but the narrowing of the distribution for large forces—see
Refs. [27,28] for a more detailed discussion on the force-
dependence of the extension variance—enhances the relative
significance in the distribution. Distributions of the bead angle
θ , however, are almost perfectly reproduced by the coarse-
grained representations [Fig. 6(g)].

D. Superhelically curved DNA

As an example of a system where intrinsic curvature is
manifestly relevant, we consider DNA sequences with an
intrinsic helically wound ground state [see Figs. 7(a) and
7(b)]. Such superhelical sequences can be constructed by
repeatedly concatenating small segments of strong intrinsic
curvature. We consider two such sequences. The first consists
of the phased A-tracts CAAAATTTTG and was considered
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by Stefl et al. [118]. Its ground state is shown in Fig. 7(a).
The second sequence, consisting of repeating segments
of CGGGGGCTTTTAGGGGGCTTTTAGGGGGCTTT was
constructed in the present work by searching for sequences
with a prominent helical diameter; see Fig. 7(b). For both
superhelical sequences, we constructed 7.9 kb long molecules
and conducted MC simulations in the unrestrained ensemble
and the FOMT setup.

Figure 7(c) shows length-scale-dependent persistence
lengths as given by Eq. (67) for the two superhelical se-
quences and the previously considered 7.9 kb sequence (taken
from Lipfert et al. [22]). Unsurprisingly, the large-scale he-
lical structure of the two superhelical sequences manifests
in strong sinusoidal oscillations of the apparent persistence
length. Missing points in the curve correspond to base pair-
step distances m for which the tangent-tangent correlation
function assumes negative values such that the logarithm in
Eq. (67) is undefined.

In Fig. 7(d) the force-extension curves of the two super-
helical sequences are compared with the largely featureless
7.9 kb sequence [22]. Both sequences exhibit markedly differ-
ent elastic responses. Specifically, the artificially constructed
sequence deviates from the response of the reference sequence
for forces lower than approximately 1 pN. In this force range,
the elastic behavior is influenced not only by entropy but
also by the Hookean response of the superhelix, see also
Ref. [119]. At higher forces, the superhelix is predominantly
stretched out, leading the response to revert to that of the
WLC model. The effective torsional stiffness Ceff is even more
distinct for the strongly superhelical sequence, exhibiting a
lower stiffness for all forces. This behavior persists to the
largest considered forces.

IV. CONCLUSIONS

In this work, we presented a systematic coarse-graining
scheme that enables the calculation of sequence-specific
coarse-grained parameters. These parameters faithfully repro-
duce structural and elastic properties relevant to the chosen
resolution. The original system is assumed to be described as
a chain of rigid bodies, each captured by an intrinsic reference
frame and characterized by a ground state and a stiffness
matrix. Importantly, our procedure does not predict elastic
parameters but transforms a given set of RBP parameters
[1,3,58,64,65] to a lower resolution.

To achieve a k-fold reduction in resolution, the method
retains every kth base pair associated reference frame while
eliminating all other frames. The ground-state structure is
then described in terms of the average relative orientation
and position of these remaining reference frames. Fluctuations
are captured through an effective stiffness matrix constructed
to closely mimic the relative fluctuations of corresponding
frames in the original system. Coarse-graining, therefore,
entails mapping parameters from one Gaussian system into
another. An extension of the coarse-graining procedure to
incorporate higher-order effects, such as, for example, elastic
multimodalities [121–123], kinks [33,35,124], and linear sub-
elastic behavior [86,125], is possible in principle but requires
more sophisticated approaches that go beyond the scope of
the current work. Likewise, higher-order components of the

coarse-grained representation have been omitted, but could be
included via a perturbative calculation. In particular, such an
extension is expected to refine the description of composite
rise fluctuations, where accurately capturing the emergent
asymmetry requires introducing odd terms in the correspond-
ing elastic Hamiltonian.

A Python module featuring implementations for all pa-
rameter transformations discussed in this work is available
at Ref. [85]. These transformations include conversions be-
tween Cayley- and Euler-map definitions of rotations (see
Appendix B), as well as between midstep-triad definitions of
translations and the definition relative to the base pair triad
employed in this work (see Appendix D).

Benchmark simulations of unrestrained molecules based
on RBP parameters derived from the cgNA+ model [65]
demonstrated that the coarse-grained parameters excellently
capture the distributions of rotational degrees of freedom.
The variances of coarse-grained rotational degrees of freedom
were found to deviate from numerically obtained references
by less than 2% for up to 40-fold reductions in resolution.
However, translational fluctuations, particularly in rise, are
less accurately reproduced. We attribute these discrepancies
to the emergent asymmetry of composite-step translational
fluctuations. Specifically, distributions of the total rise within
a segment comprising multiple base pair steps exhibit marked
left skewness, indicating that the end-to-end distance is more
frequently contracted than extended. We argue this asymmetry
to be a consequence of bending fluctuations, which, due to
the entropic elasticity of a polymer [16], results in end-point
contractions. Moreover, since DNA is found to be nearly inex-
tensible for forces below about 10 pN [18], it is reasonable to
assume rotational fluctuations to constitute the most relevant
component of sequence-dependent elasticity under physiolog-
ical conditions. We note that coarse-graining of both rotational
and translations yields satisfactory results up to the 10 bp scale
and argue that the 5-10 bp scale is a particularly relevant and
natural choice as is aligns with the diameter of the double
helix and has been employed by various studies in the past
(see, e.g., Refs. [69,126,127]).

Sequence-specific and length-scale-dependent signatures
in the bending persistence length were shown to be faith-
fully reproduced by the coarse-grained systems. Further-
more, we demonstrated that the coarse-graining approach
makes it possible to simulate setups typically studied with
single-molecule techniques, where large molecules containing
thousands of base pairs are probed. We showed simulations
of freely orbiting magnetic tweezers at 10 bp resolution
to be virtually identical to corresponding simulations per-
formed at full single-base pair resolution. This agreement is
retained even if sequences with strong intrinsic curvature—
in this case, a superhelically wound ground state—are
considered. The coarse-graining approach, therefore, gives
access to length scales far beyond what was previously
attainable.

The proposed methodology is not limited to a particular
model or parameter set and can, in principle, be applied to
achieve coarse-grained representations for any base pair reso-
lution (or higher) model. Switching to coarser representations
may enable multi-resolution simulations, capturing the region
of interest in full detail while simulating the rest of the system
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at a lower resolution. Moreover, this approach could be used
to expedite the equilibration of large systems.

We envision the access to faithful coarse-grained rep-
resentations of DNA to enable the in silico study of
many sequence-specific mesoscale phenomena. In particular,
coarse-grained simulations could aid in elucidating the role
of DNA sequences on the statistics and dynamics of DNA
plectonemes. An implementation of the coarse-grained RBP
model in a Molecular Dynamics framework might further en-
able the study of chromosomal organization guided by DNA
protein interactions such as restriction factors [27], nucleo-
somes [14,128], and the localization of DNA loops [129], for
example, guided by the action of structural maintenance of
chromosomes (SMC) complexes [130,131].
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APPENDIX A: RODRIGUES’ ROTATION FORMULA

Matrix exponentials as in Eq. (3) are computationally ex-
pensive and in practice it is more convenient to use alternative
formulations, such as Rodrigues’ rotation formula

R = eul(�) := 1 + (sin �)�̂ + (1 − cos �)�̂2. (A1)

The inverse transformation, which maps a rotation matrix to
the corresponding rotation vector, is

� = eul−1(R) := � vec(R − Rᵀ)

2 sin �
, (A2)

where � is determined by the relation trR = 1 + 2 cos �.

APPENDIX B: CONVERSION BETWEEN CAYLEY MAP
AND EULER MAP DEFINITION OF ROTATIONS

Various studies [58,64,65,89,91] favor a definition of rota-
tional components based on the Cayley map (also known as
the Euler–Rodrigues or Gibbs formula),

R = cay(�) := 1 + 4

4 + �2

(
�̂ + 1

2
�̂2

)
, (B1)

where we denote the Cayley vectors by � to distinguish
them from the Euler-vectors �. The inverse relation takes the
simple form

� = cay−1(R) = 2 vec(R − Rᵀ)

1 + trR . (B2)

Computationally these definitions have an edge over the ro-
tation vector definition chosen in the main text (in that its
definition does not involve any infinite series expansions—or
transcendental functions), but in most practical situations the
difference is rather inconsequential.

The vector � still indicates the axis of rotation, however,
the rotation angle is no longer simply given by the vector’s
magnitude, but instead |�| = 2 arctan(�/2). This implies that

the transformation of Cayley vectors into Euler vectors is
given by

� = feul(�) := 2 arctan

(
�

2

)
�

|�| , (B3)

and the corresponding inverse by

� = f−1
eul (�) := 2 tan

(
�

2

)
�

|�| . (B4)

Suppose that the geometry and Gaussian elasticity of a given
molecule containing N + 1 base pairs is expressed in terms of
a Cayley parametrization. The ground state will be specified
by the system (Cayley) vector

�̄
ᵀ
0 = (

�
ᵀ
0,1 . . . �

ᵀ
0,N

)
, (B5)

where �0,i is the intrinsic rotation between base pairs i and
i + 1 expressed in Cayley coordinates. Analogous to Eq. (22),
the (lowest order expansion of the) elastic energy takes a
(quadratic) form

βE = 1
2�̄

ᵀ
�M��̄�. (B6)

Transformation of the static component from Cayley to
Euler representation is straightforward,

�0 = feul(�0). (B7)

To identify how the stiffness matrix M� transforms under
the coordinate transformation, we expand feul to linear order
around the ground state

�μ = feul,μ(�0) + Fμν��,ν + O(�2), (B8)

where μ and ν indicate the dimensional subscripts of the
single junction element, with summation over repeating in-
dices implied. The positional subscript was omitted for ease
of readability. Equations (B8) implies that up to linear order

��,μ = Fμν��,ν, (B9)

with

Fμν = ∂feul,μ(�)

∂�ν

∣∣∣∣
�=�0

=
(

4

|�0|2 + 4
− |�0|

|�0|
)

�0,μ�0,ν

|�0|2 + |�0|
|�0|δμν, (B10)

where δμν is the Kronecker δ and |�0| is given by Eq. (B3).
Defining the block-diagonal matrix

F̄ =

⎛⎜⎜⎜⎝
F (1) 0 . . . 0

0 F (2) . . . 0
...

...
. . .

...

0 0 . . . F (N )

⎞⎟⎟⎟⎠, (B11)

which captures the transformation of the entire system, the
transformation from system-wide Cayley to system-wide Eu-
ler vector may be written as

�̄� = F̄ �̄�. (B12)

The elastic energy, Eq. (B6), may then be rewritten as

βE = 1
2�̄

ᵀ
�M��̄� = 1

2 �̄
ᵀ
�[(F̄−1)ᵀM�F̄−1]�̄�, (B13)

013044-16



SYSTEMATIC COARSE-GRAINING OF … PHYSICAL REVIEW RESEARCH 7, 013044 (2025)

FIG. 8. Comparison between sampled and analytical distribu-
tions of Euler-vector component for a single base pair-step. The
stiffness matrix in Cayley-representation was generated with cgNA+
[65] and corresponds to a single GpC step, which was generated in
the context of a larger sequence (GACTGCGCGCCTCA) to avoid
boundary effects. Tilt, roll, and twist were sampled in the original
(Cayley) coordinates and then transformed to Euler coordinates via
Eq. (B3).

where the inverse of F̄ is also block-diagonal with entries
explicitly given by

F−1
μν =

(
sec2

( |�0|
2

)
− |�0|

|�0|
)

�0,μ�0,ν

|�0|2 + |�0|
|�0| δμν.

(B14)
Finally, we can identify the sought transformation of the stiff-
ness matrix M�,

M� = (F̄−1)ᵀM�F̄−1. (B15)

In the present discussion, we assumed the energy to
be composed of solely rotational components, but since
the transformation from Cayley to Euler parameters leaves
translations unaltered, the extension of the transformation
of the stiffness matrix to include translations is straight-
forward (note however, that the entries of the stiffness matrix
quantifying translational stiffness do not generally remain
unaltered).

Last, we note that the Jacobian associated with the trans-
formation, feul,

det G = 4|�0|2
(|�0|2 + 4)|�0|2 , (B16)

takes values markedly different from 1 for typical values of
�0 (for double-stranded DNA) but varies by less than 5%
over typical ranges of �, justifying it to be ignored in most
practical cases [90].

We validate the quality of the analytical transformation
of the stiffness matrix by comparing numerically sampled
distributions (generated according to the canonical measure),
with distributions obtained by marginalizing the analytically
transformed stiffness matrix. Values are sampled in the Cay-
ley representation and then transformed to Euler-vectors via
Eq. (B3). Comparative histograms for a single base pair-step
revealing a relative difference in the variance of less than 1%
are shown in Fig. 8.

APPENDIX C: SPLITTING STATIC AND DYNAMIC
COMPONENTS AT THE TRANSFORMATION LEVEL

As introduced in the main text, it is customary to express
the transformation between consecutive base pair-related
frames as a single six-vector, containing three rotational and

three translational components. In the compact SE(3) notation
such a transformation takes the form

g =
(
R w
0ᵀ 1

)
=
(

e�̂0+�̂� s + w�

0ᵀ 1

)
. (C1)

However, the coarse-graining procedure discussed in the main
text requires static and dynamic components to be split at the
transformation level, i.e.,

g = s d, (C2)

with

s =
(
S s
0ᵀ 1

)
=
(

e�̂0 s
0ᵀ 1

)
(C3)

and

d =
(
D d
0ᵀ 1

)
=
(

e�̂� d
0ᵀ 1

)
. (C4)

In this section, we will show how to achieve this decompo-
sition and how the stiffness matrix transforms under such a
redefinition of fluctuating variables.

For consistency, the ground state should be identical
across both pictures, which leads to �0 = �0. Therefore,
we can treat s as a known quantity, such that d may be
expressed as

d = s−1g =
(
SᵀR Sᵀ(w − s)

0ᵀ 1

)
=
(
SᵀR Sᵀw�

0ᵀ 1

)
.

(C5)
From Eq. (C5) we can deduce that

d = Sᵀw�, (C6)

and

e�̂� = e−�̂0 e�̂0+�̂� . (C7)

The exact correspondence between �̂0 and �̂� is encapsu-
lated in the Baker-Campbell-Hausdorff formula, which for
three elements a, b, and c of a Lie algebra provides the so-
lution of the equation ea+b = ec in terms of the infinite series
of commutators

c = a + b + 1

2
[a, b] + 1

12
([a, [a, b]] + [b, [b, a]]) + h.o.

(C8)

where h.o. is a placeholder for the infinite series of higher-
order commutators. We seek the transformation from �� to
�� up to linear order. Therefore, it will suffice to consider
only terms linear in the fluctuating quantities. The first few
terms in the Baker-Campell-Haussdorf formula satisfying this
requirement are

�̂� = log
(

e�̂0 e�̂�

)
− �̂0

= �̂� + 1

2
[�̂0, �̂�] + 1

12
[�̂0, [�̂0, �̂�]]

− 1

720
[�̂0, [�̂0, [�̂0, [�̂0, �̂�]]]]

+ 1

30240
[�̂0, [�̂0, [�̂0, [�̂0, [�̂0, [�̂0, �̂�]]]] + h.o.

(C9)
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Note that

vec
(
[�̂0, �̂�]

) = �0 × �� = �̂0��, (C10)

nested commutators containing k static elements �̂0 and only
a single �̂�, which is arranged to be the right-hand element in
the innermost commutator, take a simple form when expressed
as vectors instead of antisymmetric tensors

vec([�̂0, [�̂0, [. . . , [�̂0, �̂�] . . .]]]) = �̂k
0��. (C11)

After substitution of Eq. (C11) into Eq. (C9), one has up to
linear order

�� = H−1(�0) ��, (C12)

with

H−1(�0) =1 + 1
2 �̂0 + 1

12 �̂2
0 − 1

720 �̂4
0

+ 1
30240 �̂6

0 + h.o. (C13)

We note that the Jacobian of this transformation is 1 since
det �̂0 = 0.

Defining the six-component basepair-step deformation
vectors that include both the rotational and the translational
components

Xᵀ
� ≡ (

�
ᵀ
� wᵀ

�

)
Yᵀ

� ≡ (
�

ᵀ
� dᵀ), (C14)

one sees that the transformation from X� to Y� may be
linearized as

Y� = H (X0)X�, (C15)

where the just derived linearized transformations of rotation
[Eq. (C13)] and translation [Eq. (C6)] are the respective com-
ponents of the matrix

H (X0) =
(

H (�0) 0
0 Sᵀ

)
. (C16)

Defining

H̄
(
X̄0
) =

⎛⎜⎜⎝
H (X0,0) 0 . . . 0

0 H (X0,1) . . . 0
...

...
. . .

...

0 0 . . . H (X0,N−1)

⎞⎟⎟⎠,

(C17)
and following the same logic that led to Eq. (B15), one finds

MY = [H̄−1(X̄0)]ᵀMX [H̄−1(X̄0)]. (C18)

APPENDIX D: CONVERSION BETWEEN MIDSTEP-TRIAD
AND TRIAD DEFINITION OF TRANSLATIONS

To achieve a parametrization of DNA configurations that
are independent of the strand direction—up to a sign-flip—
(i.e., assignment of Watson and Crick strand), translational
base pair-step components are frequently expressed in terms
of midstep coordinate frames that are found via half-way ro-
tation between the two respective reference frames (rotational
components are identical when defined relative to either of
the two respective triads or the midstep frame). However, for
this work, it proved convenient to express translations in the
frame of the first triad of each respective pair of frames. In this
section, we show how these definitions can be transformed

into one another and how the associated transformation of the
stiffness matrix can be accommodated.

The midstep triad is usually defined as [62]

Tmid,i = Ti

√
Ri, (D1)

where
√
Ri is the matrix of half rotation between the frames

Ti and Ti+1. Specifically, if

Ri = T ᵀ
i Ti+1 = exp �̂i, (D2)

then √
Ri ≡ exp

1

2
�̂i. (D3)

With respect to the midstep triad Tmid,i the translation between
base pairs i and i + 1, is given by [90]

ζi = T ᵀ
mid,i(ri+1 − ri ). (D4)

Meanwhile, the triad frame definition as introduced in the
main text is

wi = T ᵀ
i (ri+1 − ri ). (D5)

Inspection of Eqs. (D4) and (D5) reveals the relation between
the two definitions

wi =
√
Riζi. (D6)

To ascertain the transformation of the stiffness matrix, we
will once again follow the procedure of first splitting the
transformation into static and dynamic components, where the
dynamic component is assumed to be small, followed by the
linearization of the dynamic part of the transformation.

Following previous treatment the rotation
√
Ri may be

expanded to first order in the fluctuating rotational component
��,i, √

Ri = exp

(
1

2
�̂0,i + 1

2
�̂�,i

)
≈
√
Si exp

(
1

2
hat

[
H

(
�0,i

2

)
��,i

])
≈
√
Si

(
1 + 1

2
hat

[
H

(
�0,i

2

)
��,i

])
, (D7)

where we used Eq. (C12) to split the exponential. Separating
ζ = ζ0 + ζ� into static and dynamic components Eq. (D6)
takes the form

wi ≈
√
Si

(
ζ0,i + ζ�,i + 1

2
hat

[
H

(
�0,i

2

)
��,i

]
ζ0,i

)
. (D8)

Following previous procedure the quadratic term coupling
ζ�,i and ��,i was ignored. Finally, using

âb = vec([̂a, b̂]) = vec([̂bᵀ, â]) = b̂ᵀa, (D9)

one arrives at

si =
√
Siζ0,i, (D10)

w�,i =
√
Siζ�,i + 1

2

√
Sîζ

ᵀ
0,iH

(
�0,i

2

)
��,i. (D11)

The fluctuating component w�,i does not solely depend on
the ζ�,i, but rotational fluctuations ��,i lead to additional
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FIG. 9. Comparison between sampled and analytical distribu-
tions of the dynamic components of tilt, roll, and twist (in the ��

parametrization; expressed in radians) and shift, slide, and rise (in
the d parametrization; expressed in nm) for a single base pair-step.
The same sequence and procedure were considered as in Fig. 8.

translational fluctuation. In matrix form, the transformation
takes the form(

��,i

w�,i

)
=
(

1 0
1
2

√
Sîζ

ᵀ
0,iH

(
�0,i

2

) √
Si

)(
��,i

ζ�,i

)
. (D12)

The transformation of the stiffness matrix is then completely
analogous to Eq. (C18).

We jointly assess the quality of the transformations of
Appendixes C and D in the same way as was done for the
transformation of the stiffness matrix from the Cayley map
definition of rotations to the Euler map definition (see Ap-
pendix B). Rotations and translations were sampled according
to the �� and ζ� parametrizations, respectively, and then
transformed to �� and d via Eqs. (D6), (C6), and (C7).
Comparisons of the resulting histograms with the analytical
predictions obtained via Eqs. (D12) and (C18) followed by
the marginalization of the resulting stiffness matrix to the
effective stiffness of the respective degrees of freedom are
shown in Fig. 9. Deviations between sampled and analytical
variances were not found to exceed 2% for any considered
sequence out of a total sample of 500 sequences.

APPENDIX E: COMPOSITE TRANSLATIONS

This section serves to provide the details of the calculation
of the composite translation [Eq. (51)]. Working out the trans-
lational component of

d(i, j) = s−1
[i, j]g[i, j], (E1)

in terms of single junctions rotations and translations one finds

d(i, j) = Sᵀ
[i, j]w[i, j] − Sᵀ

[i, j]

j∑
l=i

S[i,l−1]sl

= Sᵀ
[i, j]

j∑
l=i

[R[i,l−1](Sldl + sl )] −
j∑

l=i

Sᵀ
[l, j]sl . (E2)

Applying the approximation used for the calculation of the
rotational component (see Sec. II C 2) then yields

Sᵀ
[i, j]R[i,l−1] = Sᵀ

[l, j]

(
Sᵀ

[i,l−1]R[i,l−1]

) = Sᵀ
[l, j]D(i,l−1)

≈ Sᵀ
[l, j] exp

(
hat

(
l−1∑
k=i

Sᵀ
[k+1,l−1]��,k

))

≈ Sᵀ
[l, j]

(
1 + hat

(
l−1∑
k=i

Sᵀ
[k+1,l−1]��,k

))
, (E3)

where the matrix exponential was expanded to first order in
the last step. Substituting Eq. (E3) into Eq. (E2) one further
finds

d(i, j) ≈
j∑

l=i

[
Sᵀ

[l, j]

(
1 + hat

(
l−1∑
k=i

Sᵀ
[k+1,l−1]��,k

))

× (Sldl + sl )

]
−

j∑
l=i

Sᵀ
[l, j]sl

≈
j∑

l=i

Sᵀ
[l+1, j]dl +

j∑
l=i

Sᵀ
[l, j]hat

(
l−1∑
k=i

Sᵀ
[k+1,l−1]��,k

)
sl

=
j∑

l=i

Sᵀ
[l+1, j]dl +

j∑
l=i

l−1∑
k=i

Sᵀ
[l, j]hat

(
Sᵀ

[k+1,l−1]��,k
)
sl .

(E4)

From the first to the second line, the terms coupling ��k

to dl were discarded since they are of quadratic order in
the fluctuations. Moreover, the constant term,

∑ j
l=i S

ᵀ
[l, j]sl ,

exactly cancels out.
Equation (E4) shows the dynamic composite translation,

d(i, j), to depend on both the dynamics junction translation, dl ,
and the dynamic junction rotation, ��,l . However, to identify
the proper junction rotation transformation one has to rewrite
the second term in Eq. (E4) as

Sᵀ
[l, j]hat

(
Sᵀ

[k+1,l−1]��,k
)
sl

= Sᵀ
[l, j]ŝ

ᵀ
l S

ᵀ
[k+1,l−1]��,k = Sᵀ

[l, j]ŝ
ᵀ
l S[l, j]S

ᵀ
[k+1, j]��,k

= hat
(
Sᵀ

[l, j]s
ᵀ
l

)
Sᵀ

[k+1, j]��,k, (E5)

where Eq. (D9) was used in the first step to shift ��,k to the
left-hand side of the expression. After combining Eqs. (E4)
and (E5) and rearranging the order of the summation one
finally arrives at

d(i, j) =
j∑

l=i

Sᵀ
[l+1, j]dl

+
j−1∑
k=i

⎡⎣ j∑
l=k+1

hat
(
Sᵀ

[l, j]s
ᵀ
l

)
Sᵀ

[k+1, j]

⎤⎦��,k . (E6)
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