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Dynamics of a polyampholyte hooked around an obstacle

H. Schiessel,* I. M. Sokolov,† and A. Blumen
Theoretical Polymer Physics, Freiburg University, Rheinstrasse 12, 79104 Freiburg, Germany

~Received 12 December 1996!

We consider polyampholytes~PAs!, which are polymers carrying positive and negative charges. The PAs
are submitted to electric fields and collide with single obstacles. Field separation of PAs depends drastically on
tu , the time to unhook. Our analysis showstu to be very sensitive to the charge distribution of the
chains: Unhooking is diffusional for regular, multiblock PAs, withtu depending on the length of the blocks;
for random charge distributionstu increases exponentially with the PAs’ length and unhooking is subdiffusive.
@S1063-651X~97!51409-7#

PACS number~s!: 87.15.2v, 05.40.1j, 82.45.1z
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Gel-electrophoresis~GE! is a widely used technique fo
size separation of polyelectrolytes~PEs! of different length
such as DNA fragments@1#. During GE the polymer gets
temporarily hooked around gel fibers, and the release t
determines the overall process. In a more general fashion
investigates the timetu needed by polymers to disentang
from single obstacles~say posts! @2–7#.

A related problem is the behavior of polyampholyt
~PAs!, which are heteropolymers that carry both positive a
negative charges, in gels under external electrical fields.
series of works@8–12# we have investigated the behavior
PAs in dilute solutions and found that the charge distribut
~CD! leads to a great variety of static and dynamical la
@9,12# which furthermore depend on the intramolecular el
trostatic coupling@11,12#, on the solvent’s quality@11,12#,
on the chain’s extensibility@10# ~cf. also the paper of
Winkler and Reineker@13#!, and on the hydrodynamically
mediated monomer interactions@12#. A study of the PAs’
motion using the biased reptation framework@14# revealed
the paramount role played by the detailed distribution
positive and negative charges along the chain on the ov
PA’s mobility in a network. We hence focus here on ho
tu , the time to unhook from a single obstacle, depends
the PA’s particular CD. As we proceed to show, we inde
find tu to depend drastically on the CD.

Before discussing PAs we recall the findings for PEs
tangled to a fiber. Just after the collision the PE coil g
unraveled by the external field and shows in the simp
case only two arms, left and right of the fiber, consisting
monomers 1 tom andm11 to N, respectively. In general
we denote byqn the charge on thenth monomer, so that for
PE, evidently,qn5q for all n. The total charge on the lef
arm is Qm5mq, and on the right armQtot2Qm5(N2m)q,
where Qtot5QN is the total charge of the PE. Hence, t
tangential forceF(m) acting along the chain from right to
left is F(m)5QmE2(Qtot2Qm)E52qEm2qEN. Assuming
the chain to be free-draining~i.e., the friction to be propor-
tional toN! and to be inextensible and neglecting the Brow
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ian motion and the friction between PE and fiber, one ha

Nzbṁ~ t !52qEm~ t !2qEN. ~1!

In Eq. ~1! m(t) denotes the number of the monomer which
in contact with the fiber at timet, b is the monomer length
andz the friction constant per monomer. The solution of E
~1! with initial condition m(0)5m is

m~ t !5S m2
N

2 DexpF2qE

Nzb
tG1

N

2
. ~2!

From Eq.~2! the timetu is given implicitly bym(tu)50 for
m,N/2 and by m(tu)5N for m.N/2. Thus, say form
,N/2, one hastu5(Nzb/2qE)ln@N/(N22m)#. Hence, as-
sumingm5m(0) to be equally distributed we find by ave
aging overm

tu5
zb

2qE
N. ~3!

We note that other models, as long as the chain is inex
sible, lead to the same dependence on the parameters@3–7#.
For Gaussian chains, however, one hastu}N2 @5,6#. Con-
sider, namely, a bead-spring model, whose harmonic spr
have equal spring constantsK. The tension acting on eac
arm increases from the free end to the hook, where the fo
is of the order ofqEN. Thus the extensionD l of the springs
near the hook is of the orderD l'qEN/K; taking D l as the
typical segment length, i.e., assumingb'D l , Eq. ~3! takes
now the formtu'zN2/K which is independent ofE @5,6#.
Furthermore, the same power-law dependences oftu on N
also hold in the non-draining case, despite the complex
behavior discussed in Ref.@15#. Hence, for PEstu is a power
law of N; now, since the standard deviationst of tu is of the
same order thantu itself ~for the inextensible case, discusse
above, one hasst5&tu!, collisions with individual ob-
stacles are not a powerful means to separate different
according to length~see the discussion in Ref.@4#!.

As shown, a PE gets unhooked due to the difference in
forces acting on its two arms. As we proceed to show,
unhooking scenario of PAs is generally different, since
many cases a PA requires thermal activations to disenta
from a fiber. This leads to an exponentialN dependence of
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tu ~and, indeed, to a standard deviationst of a similar form!.
Note that due to the exponentialN-dependence long chain
stick for very long times to the hook, times in which most
the shorter chains unhook.

Let us first calculate the deformation of a free PA with t
charge distribution$qn% having a vanishing total charg
Qtot5Sk51

N qk50. We use the Gaussian, bead-spring mode
which the monomers are connected by harmonic springs
chain; the~entropic! spring constant isK53T/b2, whereT
denotes the temperature in units of the Boltzmann cons
kB . We take the external field to point in theY-direction and
denote byY(n) the time-averaged position of thenth mono-
mer in the Y-direction relative to the first, i.e.,Y(1)50.
Thus, Y(n) is the sum of all the elongations of the firstn
21 bonds. For the free PA the mean distance between
monomersk andk11 in the direction of the field, i.e.,Y(k
11)2Y(k), can be calculated as follows: The bond co
necting the beadsk and k11 subdivides the chain in two
parts, one consisting of the monomersn51,...,k with the
chargeQk5S i 51

k qi , and the other consisting of the mon
mers n5k11, . . . ,N with the charge2Qk . Hence,Y(k
11)2Y(k)52QkE/K and thus

Y~n!52
b2E

3T (
k51

n21

Qk ~4!

~cf. also Eq.~16! of Ref. @12# with i 50 andj 5n21!. In Eq.
~4! we neglect the intramolecular electrostatic interaction
the charged monomers. This may be realized experimen
for weakly charged PA chains: For randomly charged P
with Qtot50 in a Q solvent, the coupling between th
charges can be neglected as long asN,(b/ f l B)2 holds
~weak coupling limit! @12,16#. Here f denotes the fraction o
charged monomers andl B5q2/(«T) is the Bjerrum-length
~« is the dielectric constant!; in water at room temperatur
one hasl B>7 Å. These arguments remain valid for no
neutral chains as long as the charge asymmetry is s
enough:Qtot,qN1/2 @12,17#. Note that neutral and/or weakl
charged PA solutions can be prepared without counter
@18#.

We assume now that thefreePA drifts moderatelywith a
constant velocityn0 ; this may be due to a uniform flow field
acting on the PA or due to a small excess chargeQtot which
is added uniformly to the PA~so that each monomer carrie
the additional chargeDq5Qtot /N which is small compared
to the characteristic charge per monomer!. We denote by
F tot5QtotE the overall external force which induces this dri
Note that the additional excess chargeDq per monomer does
not influence the internal deformation of the PA, i.e., Eq.~4!
remains valid~cf. Ref. @12# for a rigorous discussion!.

Let us now consider the potential energy of a PA in co
tact with a fiber; such a situation may arise when the
drifts through the gel~due to a flow or to a small additiona
charge!. Let the contact occur at themth monomer; the situ-
ation is shown in Fig. 1. Assume, for instance, thatQm.0.
ThenY(m11)2Y(m) as well asY(m)2Y(m21) have, in
general, the same sign, as depicted in Fig. 1. This is diffe
from the PE problem where a hairpin situation develo
with two arms directed parallel to the field; here, it is ev
not clear that the PA will stay in contact with the fiber durin
the whole unhooking process.
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A simplification of the model can be achieved by assu
ing the PA to be restricted through a slip-link@19,20# located
at the point of impact. The motion is then one-dimensio
and the potential energy of a chain hooked atn is given by

U~n!5F totY~n!52
b2F totE

3T (
k51

n21

Qk , ~5!

where we setU(1)50. We expect the introduction of th
slip-link to capture the main physical aspects in the deter
nation oftu and we relegate towards the end of the letter
discussion of the additional degrees of freedom which
involved for a PA colliding with a fiber. In Eq.~5! we as-
sume further that the external force is small enough so
the perturbation ofY(n) caused by the hook-chain intera
tion can be neglected; this perturbation is of second orde
U(n), which restricts our theory to moderate values ofDq
independent of the field strength~see below!. Furthermore in
the linear regime@assumed in Eq.~4!# one has no lever ac
tion since the dynamics in the directions perpendicular to
field direction is decoupled from the dynamics in field dire
tion @8,12#, i.e., we have here no rotation of the whole cha
around its anchor point.

As we will show, the dynamics of the PA through th
slip-link depends strongly on its CD which enters Eq.~5!.
We consider two cases: periodic CDs~multiblock PAs! as
well as completely random patterns. As we proceed to sh
the first case leads to diffusive behavior whereas the sec
case is highly subdiffusive.

Consider first multiblock PAs consisting of regular pa
terns of positively and negatively charged blocks. For ma
ematical convenience we take the CD$qn% to be periodic,

qn5q cosS 2ppn

N D1Dq, ~6!

with 0<n<N. In Eq. ~6! p is the number of repeat units
each consisting of N/p monomers. We haveQn
5(qN/2pp)sin(2ppn/N)1nDq and thus Qtot5QN5NDq.
Now it follows from Qn that for qN/p@NDq, i.e., Dq
!q/p the interaction with the hook affects only slightly th
conformation of the free chain, Eq.~4! ~this is independent

FIG. 1. PA hooked around a fiber. Depicted is a small part of
chain with a minimum atl .
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of E!. InsertingQn ~without the smallDq-correction term!
into Eq. ~5! leads toU(n)5Ap@cos(2ppn/N)21# with Ap
5qEFtotb

2N2/(12p2p2T).
Let us now calculate the timetu needed by the PA to free

itself from the slip-link, by having one of its end-monome
pass through it. We make use of arguments from activa
theory. If the potential barrierDU is much larger than the
thermal energyT, i.e. if p!p05bNAqEFtot /(6p2T2) the
chain will be trapped in one of thep minima, situated at the
monomer positionsnk5(k21/2)N/p with k51, . . . ,p. The
escape timetp from each of these minima is the same a
can be estimated from the Arrhenius-Kramers argument to
tp>(6pNzT/F totqE)exp(2Ap /T) ~the preexponential facto
follows from Eq.~XIII.2.2! of Ref. @21#!. Thus the dynamics
of the multiblock PA through the slip-link may be viewed
being a hopping process from one minimum to one of
two neighboring minima; this is effectively a one
dimensional random walk. Typically one of the PAs ends
reached when the number of steps is of the orderp2 so that
tu follows,

tu>p2tp>
6pNzT

qEFtot
p2expFb2qEFtot

6p2T2

N2

p2 G , ~7!

for p,p0 . Now tu grows with decreasingp and attains its
maximal valuetu}NFtot

21exp@cFtotN
2# for p51 ~c is a nu-

merical constant!. The limit of validity of the Arrhenius ar-
gument is reached whenp approachesp0 ; then

tu>
b2N2Nz

T
5

b2N2

D
, ~8!

whereD5T/(Nz) is the diffusion constant of the free chai
Evidently, Eq.~8! holds also forp.p0 , since then the ther
mal energyT is larger than the amplitude of the potential
that the Brownian motion given by Eq.~8! is not affected
by the external potential. The two limiting cases, Eq
~7! and ~8! also follow from the solution of the corre
sponding one-dimensional diffusion problem, leadi
to tu>(b2N2/D)@ I 0(Ap /T)# @where I 0(x) denotes the hy-
perbolic Bessel function of order zero#.

Let us now consider PAs whose charges are rando
distributed along the chain, so that each monomer car
either the charge1q or 2q. For an uncorrelated distributio
of charges one haŝqiqj&5q2d i j where the brackets denot
the average with respect of different realizations of$qn%.
Such PAs, however, have typically total chargesQN of the
order of 6qAN, whereas we requireQN5NDq with Dq
!q/AN ~this ensures that the collision perturbs the PA
conformation only slightly!. This is achieved by distributing
~in addition to the excess chargeDq per monomer! N/2 posi-
tive andN/2 negative charges along the chain, resulting i
small negative correlation@9#

^qiqj&>Hq2

2q2/~N21!

for i 5 j
for iÞ j . ~9!

This leads tô ((k51
N Qk)

2&5q2N3/12 from which the typical
fluctuationsDU of the potential, Eq.~5!, follow,
n

e

e

s

.

ly
es

a

DU>A^U2&>
b2F totqE

T
N3/2. ~10!

DU is also a measure for the typical depth of the larg
minimum of U(x). The typicaltu for random PAs follows
then as an Arrhenius-type law:

tu}t0N expFb2F totqE

T2 N3/2G , ~11!

where the preexponential factort0 depends only weakly on
N.

Let us draw now comparison to a similar, classical e
ample for diffusion in disordered media, namely,Sinai dif-
fusion @22–26#. In this case one has diffusion in a random
walk-like potential, which means that the local bias fields a
uncorrelated. Sinai showed that in this case the me
squared displacementx2 of the random walker displays
logarithmic time-dependence, namely,x2} ln4t @22#. Thus
the random external potential leads to a drastically slow
down, subdiffusive process. In our case we have also a
dom potential, being however, the integral of a random wa
sinceU(n) is proportional to the sum of theQk @cf. Eq. ~5!#,
which itself is a random walk. Due to the correlations of t
potential the scaling argument given above indicates
then the mean-squared displacement is even slower tha
the Sinai case, namely,x2} ln4/3t @cf. Eq. ~11!#. This is con-
sistent with the results of Refs.@23, 24#, where it is shown
that correlations of the potential of the form (DU)2}N11l

~with l.21! lead to a mean-square displacement of
form x2}(lnt)4/(11l); our case corresponds tol52. Thus we
find that long PAs with random CDs will practically no
become disentangled.

Up to now we have tacitly assumed that the hindran
~fiber, post! scans the potential, Eq.~5!, sequentially along
the arclength of the chain. There may be, however, ov
hangs as depicted in Fig. 1: In the reference frame of
chain the hook may drift directly from the position of thenth
monomer to the position of thel th one. Nevertheless, such
situation will not lead to a significant perturbation of th
dynamics of the hooked chain since in any case the PA
become trapped in the minimum atl . In three dimensions
~3D!, however, rotations of parts of the chain around t
fiber during such noncontact periods may allow the fiber
bypass one or several neighboring minima or may even
lease the whole chain from the entanglement. Neverthel
despite these effects the trapping in the deepest minimum
U(n) controls the dependence of the unhook time, i.e., E
~7! and ~11! are good estimates fortu .

In 2D, which may be achieved by confining the polym
between two parallel plates, such disentanglement me
nisms can be avoided. Let the chain be confined betweeZ
50 andZ5h with h being much smaller than the radius
gyration of the chain. Assume that the PA is initially order
in the X direction ~i.e., Xn11.Xn! and is not allowed to
cross itself. Then the fiber will practically see all minim
along the PA’s contour; we expecttu to be larger in 2D than
in 3D. Especially in the case of multiblock PAs one h
tu

(3D),tu
(2D) , with tu

(2D) given by Eq.~7!; assuming in the
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3D-case that the chain’s conformation in theXZ plane~per-
pendicular to the electrical field! is Gaussian, one has typ
cally Ap minima which are effectively accessible for th
hook instead ofp ones in 2D. Thus we predicttu

(3D)

'tu
(2D)/p.
.

.

.

or
Our thanks are due to Professor J. Klafter and to Dr.
Oshanin for discussions. We acknowledge support by the
~Grant No. CHRX-CT93-0354!, by the Deutsche Fors
chungsgemeinschaft and by the Fonds der Chemischen
dustrie.
nd

y,

lar

u,
@1# B. Nordén, C. Elvingson, M. Jonsson, and B. A˚ kerman, Quart.
Rev. Biophys.24, 103~1991!; B. Zimm and S. Levene, Quart
Rev. Biophys.25, 171 ~1992!.

@2# W. D. Volksmuth and R. H. Austin, Nature~London! 358, 600
~1992!.

@3# W. D. Volksmuth, T. Duke, M. C. Wu, R. H. Austin, and A
Szabo, Phys. Rev. Lett.72, 2117~1994!.

@4# G. I. Nixon and G. W. Slater, Phys. Rev. E50, 5033~1994!.
@5# E. M. Sevick and D. R. M. Williams, Phys. Rev. E50, 3357

~1994!.
@6# Y. Masubuchi, H. Oana, T. Akiyama, M. Matsumoto, and M

Doi, J. Phys. Soc. Jpn.64, 1412~1995!.
@7# E. M. Sevick and D. R. M. Williams, Phys. Rev. Lett.76, 2595

~1996!.
@8# H. Schiessel, G. Oshanin, and A. Blumen, J. Chem. Phys.103,

5070 ~1995!.
@9# H. Schiessel, G. Oshanin, and A. Blumen, Macromol. The

Simul. 5, 45 ~1996!.
@10# H. Schiessel and A. Blumen, J. Chem. Phys.104, 6036~1996!.
@11# H. Schiessel and A. Blumen, J. Chem. Phys.105, 4250~1996!.
@12# H. Schiessel and A. Blumen, Macromol. Theory Simul.6, 103

~1997!.
@13# R. G. Winkler and P. Reineker, J. Chem. Phys.106, 2841

~1997!.
y

@14# D. Loomans, H. Schiessel, and A. Blumen, J. Chem. Phys.~to
be published!.

@15# D. Long and A. Ajdari, Electrophoresis.17, 1161~1996!.
@16# P. G. Higgs and J. F. Joanny, J. Chem. Phys.94, 1543~1991!;

A. V. Dobrynin and M. Rubinstein, J. Phys.~France! II 5, 677
~1995!.

@17# Y. Kantor and M. Kardar, Phys. Rev. E51, 1299~1995!.
@18# J.-M. Corpart and F. Candau, Macromolecules26, 1333

~1993!.
@19# M. Doi and S. F. Edwards, J. Chem. Soc. Faraday Trans. 274,

1802 ~1978!.
@20# J. Rieger, Macromolecules22, 4540~1989!; D. Loomans, I. M.

Sokolov, and A. Blumen,ibid. 29, 4777~1996!.
@21# N. G. van Kampen,Stochastic Processes in Physics a

Chemistry~North-Holland, Amsterdam, 1992!.
@22# Y. Sinai, Theor. Probab. Appl.27, 256 ~1982!.
@23# S. Havlin, R. Blumberg Selinger, M. Schwartz, H. E. Stanle

and A. Bunde, Phys. Rev. Lett.61, 1438~1988!.
@24# S. Havlin, in Dynamical Processes in Condensed Molecu

Systems, edited by J. Klafter, J. Jortner, and A. Blumen~World
Scientific, Singapore, 1989!.

@25# J. P. Bouchaud and A. Georges, Phys. Rep.195, 127 ~1990!.
@26# G. Oshanin, S. F. Burlatsky, M. Moreau, and B. Gavea

Chem. Phys.177, 803 ~1993!.


