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Statistical mechanics of multiplectoneme phases in DNA
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A stretched DNA molecule that is also under- or overwound undergoes a buckling transition, forming
intertwined looped domains called plectonemes. Here we develop a simple theory that extends the two-phase
model of stretched supercoiled DNA, allowing for the coexistence of multiple plectonemic domains by including
positional and length distribution entropies. Such a multiplectoneme phase is favored in long DNA molecules in
which the gain of positional entropy compensates for the cost of nucleating a plectoneme along a stretched DNA
segment. Despite its simplicity, the developed theory is shown to be in excellent agreement with Monte Carlo
simulations of the twistable wormlike chain model. The theory predicts more plectonemes than experimentally
observed, which we attribute to the limited resolution of experimental data. Since plectonemes are detected
through fluorescence signals, those shorter than the observable threshold are likely missed.
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I. INTRODUCTION

In the cellular environment, DNA typically exists in a
torsionally underwound state, a conformation finely regulated
by the concerted activity of enzymes such as topoisomerases
and polymerases [1]. Over- and underwound DNAs—also
called supercoiled DNA—exhibit a distinct response to the
imposed torsional strain that culminates in the assumption of
superhelically coiled configurations called plectonemes [2,3]
(from the Greek pléko, braid, and níma, filament; see Fig. 1).
The transition into the plectonemic state is commonly referred
to as DNA buckling. Supercoiling is important for a multi-
tude of biological processes, such as the regulation of gene
expression [4–7], the maintenance of chromatin architecture
[8–13], and retroviral integration [14]. One mechanism by
which supercoiling promotes biological function is the induc-
tion of proximity between distal sites to favor, for example,
the binding of DNA-bridging proteins [14–18] and the inter-
action between promoter-enhancer pairs [19,20]. The broad
phenomenology of DNA supercoiling has been studied exten-
sively due to its relevance in biology [18,21–34], yet many
aspects remain elusive. Whether supercoiling is a plausible
mechanism leveraged in the establishment of DNA bridges
critically depends on the relation between the distance of the
binding motives and the typical size of plectonemes. If the
distance between these sites significantly exceeds the charac-
teristic size of a plectoneme, supercoiling is unlikely to con-
tribute to the establishment of proximity between the relevant
segments. Conversely, binding between motives within the
range of characteristic plectoneme lengths is likely enhanced
by supercoiling. In this work, we explore to which degree
supercoiling is segregated into multiple plectonemes and how
this distribution is influenced by external forces and torques.

*These authors contributed equally to this work.

We study this phenomenology in the context of single-
molecule magnetic tweezers (MTs) [35–37], which have
emerged as prominent tools for the experimental exploration
of DNA supercoiling. In MT experiments, a single DNA
molecule is tethered between a superparamagnetic bead and
a flowcell surface. Exposure of the bead to an appropriately
calibrated magnetic field allows for the induction of linear
stretching forces (see Fig. 1). Additionally, rotating the field-
inducing magnet enables the torsional state of the molecule to
be controlled. This torsional state corresponds to the mutual
wrapping of the two individual strands of a double-stranded
DNA molecule. In the torsionally relaxed state, these strands
wrap around each other approximately once every 10.5 base
pairs, resulting in a relaxed state linking approximately Lk0 ≈
N/10.5 for a molecule consisting of N base pairs. Rotation of
the bead induces an excess linking strain �Lk=Lk − Lk0 �=0.

The classical readout of these experiments is limited to the
tether extension (i.e., the bead-surface distance), which may
be observed in terms of the number of turns imposed on the
bead. Plectoneme formation becomes indirectly visible due to
the significant and progressive reduction in tether extension
with increasing linking strain. This behavior—characterized
by the mean extension [3,24,36–40] and extension fluctua-
tions [18,32]—is well understood. However, this readout does
not yield access to the morphology and phase characteristics
of the underlying molecule. Several studies have attempted
to shed light on these characteristics by combining MT (or
similar) setups with fluorescent microscopy, which enables
the visualization of the molecule [25,41]. Van Loenhout et al.
[25] demonstrated the propensity of DNA to nucleate into
more than one plectoneme. In the present work, we revisit
this observation by leveraging a combination of simulation
and analytical approaches.

In theoretical treatments of DNA supercoiling, introducing
the supercoiling density σ = �Lk/Lk0 proves convenient be-
cause it is independent of the molecule’s curvilinear length.
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FIG. 1. Setup of a typical DNA magnetic tweezers experiment.
The DNA molecule is tethered at one end to a solid surface and at
the other to a paramagnetic bead. A magnetic field is applied which
exerts a linear force f and rotates the bead to a �Lk number of turns
(counted with respect to the torsionally relaxed state). When �Lk
exceeds a threshold value, the molecule buckles, and plectonemic
supercoils appear. We develop a theory of multiplectonemes that
incorporates a free-energy penalty for plectoneme nucleation along
with two entropic terms: one for positional entropy and another for
length-exchange entropy.

Due to its chiral nature, DNA exhibits a different response
to overwinding (σ > 0) versus underwinding (σ < 0). No-
tably, underwinding, coupled with adequate stretching forces,
leads to a structural transition known as torsionally induced
melting [42]. However, this transition predominantly occurs
for stretching forces exceeding 1 pN [21]. Here, we restrict
our analysis to the linear elastic regime, ignoring higher-order
transitions, thus rendering our approach fully symmetric re-
garding over- and underwinding.

DNA buckling is commonly described as a (pseudo) first-
order phase transition [39]. While gradually increasing σ

starting from the torsionally relaxed state (σ = 0), the tethered
molecule initially remains in an elongated state until a thresh-
old value σ = σs is reached. Beyond this (buckling) point,
plectonemes nucleate along the stretched phase, as depicted in
Fig. 1. This transition comes at the cost of a considerable re-
duction in tether extension but enables the absorption of more
linking strain due to the crossings within the plectonemes,
i.e., the supercoiling density of plectonemes exceeds that of
the stretched phase (σp > σs). This phenomenon resembles
liquid-vapor coexistence, where the two phases are main-
tained at different particle densities (nliq > nvap).

In this work, we employ efficient Monte Carlo simula-
tions (MC) of a discrete twistable wormlike chain (TWLC)
to infer the physical properties of plectonemes in stretched
and torsionally constrained DNA. Moreover, we develop a
simple statistical mechanical approach that describes a DNA
molecule as a chain consisting of stretched and plectonemic
phase segments. The model features a free energy penalty
associated with the interface between the two phases that
tends to suppress plectoneme nucleation. Nevertheless, in
long DNA molecules, the nucleation of multiple plectonemes
becomes entropically favorable. We account for two types
of entropic contributions: positional entropy, which reflects
the number of possible positions for plectonemes along the
stretched segments, and length-exchange entropy, which de-
scribes the partitioning of the total plectonemic length among
different plectonemes (see Fig. 1), similar to Ref. [43].
Throughout this work, we refer to this model as the multi-
plectoneme model (MP).

Our approach of accounting for the positioning and length
distribution entropy is very similar to those employed in prior
studies [43,44]. These works developed sophisticated geomet-
ric descriptions for the plectoneme free energy accounting for
a host of different factors, including the twist and bending
strains within the superhelical winding, electrostatic interac-
tions, confinement entropy, plectoneme tail bending, and end
loop contributions. Due to their complexity, these approaches
require extensive numerical optimization and are subject to
various approximations. To avoid these complications, we em-
ploy a much simpler empirical free energy that was derived via
umbrella sampling of MC simulations in previous work [32].
Despite its simplicity, the model displays excellent agree-
ment with MC-generated data regarding the average number
of plectonemes, their lengths, and distribution, as well as
other quantities such as the torque versus supercoiling density.
Moreover, we demonstrate the model to reproduce additional
features observed in a recent MT study [45].

This paper is organized as follows: Section II reviews the
two-phase model of stretched DNA buckling and introduces
the theoretical framework of the multiplectoneme model.
Section III introduces the Monte Carlo simulations and the
methodology of inference for the relevant observables. The
simulation readout is then compared to the model predictions
for various quantities. Contextualization and comparison with
experimental data are provided in Sec. IV. Finally, Sec. V con-
cludes the paper by highlighting the relevance of our findings.

II. MODELING THE MULTIPLECTONEME STATE

In the two-phase model of stretched DNA buckling, a DNA
molecule of length L subject to a stretching force f and at
fixed supercoil density σ is described as consisting of two
distinct phases [3,39]: the stretched phase and plectonemic
phases, with corresponding free energies per unit length S (φ)
and P (ψ ), respectively, where φ and ψ are the supercoil
densities in the two phases.

For the introduction of the theoretical description, we re-
strict the discussion to simple quadratic free energies that
allow for closed-form expressions for many relevant quanti-
ties and therefore serve for illustration. When comparing to
Monte Carlo-sampled and experimental data, we incorporate
higher-order corrections that have been shown in previous
work to provide superior agreement with MT and MC data
[32] (see Appendix A). In this quadratic description, the free
energies of the two phases are given by [39]

S (φ) = −g( f ) + a( f )φ2, (1)

P (ψ ) = bψ2. (2)

The free energy of the stretched phase, Eq. (1), can be derived
from the twistable wormlike chain (TWLC) as a high-force
expansion [38,46]. The theory yields the coefficients

g( f ) = f

⎛⎝1 −
√

kBT

A f
+ · · ·

⎞⎠, (3)

a( f ) = C

2

⎛⎝1 − C

4A

√
kBT

A f
+ · · ·

⎞⎠kBT ω2
0, (4)
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where A is the bending stiffness, C is the twist stiffness, and
ω0 is the intrinsic twist of the double helix. Throughout this
work, we use the values A = 40 nm, C = 100 nm, which
were shown to yield excellent agreement with MT data [18],
and ω0 = 1.75 nm−1. The high-force expansions (3), and
(4) are valid in the regime kBT/A f � 1, which corresponds
roughly to f > 0.5 pN. The plectonemic free energy (2) is
phenomenological and may be viewed as a lowest-order ex-
pansion of the underlying free energy. The parameter b is
usually expressed as

b = 1
2 PkBT ω2

0, (5)

where P is referred to as the effective torsional stiffness of
the plectonemic phase [45], which by analogy to A and C
is expressed in units of length. Assuming a fraction ν of the
molecular length to be contained in the stretched phase—and
consequently a fraction (1 − ν) in the plectonemic phase—the
total free energy can be written as [39]

F (φ,ψ, ν) = νS (φ) + (1 − ν)P (ψ ). (6)

Minimization of F under the constraint of fixed total linking
number—or equivalently total supercoiling density σ = νφ +
(1 − ν)ψ—leads to a double tangent construction [39].

In terms of the parameters of the free energies, one finds
the phase boundaries [32]

σs =
√

b g

a(a − b)
, σp =

√
a g

b(a − b)
, (7)

which mark the limits of the regime of coexisting plectoneme
and stretched phases: σs < |σ | < σp. At supercoiling densities
smaller than σs (|σ | < σs), the molecule is in a pure stretched
phase, referred to as the pre-buckling regime. Conversely,
supercoiling densities exceeding σp (|σ | > σp) mark a pure
plectonemic phase. Partial or fully plectonemic states are
commonly referred to as the post-buckling regime. This sim-
ple theory describes buckling as a thermodynamic first-order
transition. Note that this description does not account for the
distribution of the two phases (corresponding to more than one
plectoneme) along the molecule.

A. The torque ensemble

Entropically, the nucleation of multiple plectonemes is fa-
vored over the formation of a single plectonemic domain.
However, the propensity for local phase-switches is con-
strained by free-energy penalties associated with the cost of
generating plectoneme end-loops and tails. Consequently, the
average number of plectonemes is determined by the interplay
between the entropic gain and enthalpic loss associated with
plectoneme nucleation. These effects cannot be accounted
for by the two-phase theory introduced above since it only
considers the balance between the two phases and not their
distribution along the chain. For the incorporation of the
occurrence of multiple plectonemes in the thermodynamic
description, it turns out to be advantageous to consider the
fixed torque ensemble (τ = cte) instead of the fixed linking
number ensemble (σ = cte). Although this ensemble differs
from the scenarios typically considered experimentally, we
are still able to deduce key observables relevant to the linking

FIG. 2. Free-energy densities in the torque ensemble. Dashed
and dotted lines: free energies of the stretched (9) and plectonemic
(10) phases, respectively. Green solid line: Free energy per unit
length of the MP model, from Eq. (22), vs torque. The inset pro-
vides a close-up view of the free energies near the buckling torque,
highlighting the smooth transition captured by the MP model. The
parameters used for the graphs are f = 0.5 pN, μ = 50 pN nm, and
lc = 100 nm. The corresponding buckling torque [from Eq. (11)] is
τ ∗ = 8.32 pN nm.

number ensemble. In the context of MT experiments, torque
is related to the free energy via a partial derivative with re-
spect to θ , the rotation angle described by the bead, which is
proportional to the supercoiling density θ = Lω0σ ,

τ = 1

ω0

∂F
∂σ

, (8)

where F is the free energy per unit length. Stretched- and
plectonemic-phase free energies in the torque ensemble are
related to the linking number analogous via Legendre trans-
forms. Transformation of Eqs. (1) and (2) yields

S̃ (τ ) = −g − ω2
0

4a
τ 2, (9)

P̃ (τ ) = −ω2
0

4b
τ 2. (10)

In the torque ensemble, the buckling torque is obtained from
the condition S̃ (τ ∗) = P̃ (τ ∗) which gives

τ ∗ = 2

ω0

√
abg

a − b
. (11)

The condition of equal torque implies the total free energy to
be given by the minimum of the two individual contributions,

F̃ (τ ) = min
τ

(S̃ (τ ), P̃ (τ )). (12)

which is valid in the thermodynamic limit L → ∞. This
means that, in this approximation, the molecule remains fully
in the stretched state for |τ | � τ ∗ [F̃ (τ ) = S̃ (τ )] and then im-
mediately transitions into the fully plectonemic state for |τ | �
τ ∗ [F̃ (τ ) = P̃ (τ )]. The dotted and dashed lines in Fig. 2 are
plots of the stretched and plectonemic phase free energies
for the quadratic model. The intersection between these two
curves corresponds to the buckling torque τ ∗.
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n = 3

lc

l1

l2

l3
L - Lp

Lp

FIG. 3. Schematic representation of the MP model for a multi-
plectonemic phase with n = 3 plectonemes. (a) The configurational
entropy (14) quantifies the number of possible ways to distribute n
plectonemes along a stretched segment of length L − Lp. (b) The
number of ways the cumulative plectoneme length Lp can be par-
titioned over the given number of plectonemes gives rise to the
length-exchange entropy (16). The hatched regions indicate the min-
imal size of the plectoneme lc in the MP model.

B. The multiplectoneme model

We use the two-phase description of DNA supercoiling to
obtain the free energy associated with the multiplectonemic
phase. We distinguish between three separate contributions
to the multiplectonemic phase free energy: one enthalpic and
two entopic components. Assuming a multiplectonemic phase
of n plectonemes with a cumulative length Lp, the enthalpic
contribution to the free energy is given by

Fenth.(L, Lp, n) = (L − Lp)S̃ + LpP̃ + nμ, (13)

where μ > 0 is the free energy cost of inserting a plectoneme
within a stretched-phase domain. This may be viewed as an
effective elastic term for the necessary bending to transition
into a plectoneme and the creation of a plectoneme end-loop.

A large value of μ results in a propensity towards the
formation of relatively few, but larger plectonemic domains,
whereas small values of μ favor the formation of a relatively
large amount of short plectonemes. The nucleation free energy
μ serves as a free parameter in our theory and will be fitted to
Monte Carlo data, as discussed in detail in Sec. III.

The remaining entropic contributions to the free energy
have been derived previously in Ref. [43]. The first component
is the positional entropy. It counts the number of configura-
tions in which the n plectonemes can be inserted along the
stretched phase (of length L − Lp),

�n(Lp) = 1

n!

(
L − Lp

�l

)n

, (14)

as illustrated in Fig. 3(a). To make �n(Lp) dimensionless,
we introduced a discretization length �l , which rescales all
lengths. Technically, this introduces configurations for which
plectonemes occupy the same site. However, for sufficiently
small values of �l , the statistical weight of such configura-
tions becomes vanishingly small. Note that this expression
is exact in the continuum limit. In practice, we choose a
discretization length of 1 nm. The second entropic compo-
nent originates from partitioning the cumulative plectonemic
length Lp among n different plectonemes. To discriminate

small and nonphysical plectonemic domains, we introduce
a length cutoff lc, which constitutes the minimal size of a
plectoneme. The partitioning of a segment of total length Lp

into n segments of minimal length lc consists in splitting the
interval [0, Lp] into subintervals of lengths l1, l2, . . . , ln with∑

k lk = Lp and fulfilling the constraints

lc � lk � Lp − (n − k)lc −
k−1∑
m=1

lm. (15)

The number of ways in which this partitioning can be done is
given by

�n(Lp) = 1

(n − 1)!

(
Lp − nlc

�l

)n−1

, (16)

which corresponds to the partition function of a hard rod
model.

Combining enthalpic (13) and entropic (14), (16) terms and
summing up all possible lengths of the plectonemic phase Lp

(at fixed torque τ ), we obtain the total partition function for n
plectonemes

Z (n) =
∑

Lp

e−βFenth.(L,Lp,n)�n(Lp)�n(Lp), (17)

with β = 1/kBT and where the sum runs over values of
Lp which are multiples of the discretization length �l and
with nlc � Lp � L. Using the change of variable x ≡ (Lp −
nlc)/(L − nlc) we can recast (17) in the following continuum
integral form:

Z (n) = αn

n!(n − 1)!

∫ 1

0
e−γnx(1 − x)nxn−1dx, (18)

where

αn ≡ e−βFenth.(L,nlc,n)

(
L − nlc

�l

)2n

, (19)

and

γn ≡ β(L − nlc)(P̃ − S̃ ). (20)

Note that γn is positive for τ < τ ∗ and negative for τ > τ ∗.
The total partition function of a DNA molecule of length L

is obtained by summing over the number of plectonemes n

ZTOT(L) =
nmax∑
n=0

Z (n), (21)

where the maximum number of plectonemes is set nmaxlc = L.
For the range of lengths considered in this work—L ≈ 10 µm
corresponding to ≈30 kb—the sum in (21) can be safely
truncated to n � 20 because the statistical weight of configu-
rations with larger numbers of plectonemes is negligible. The
free energy per unit length is then given by

F̃ = −kBT

L
log ZTOT(L). (22)

In practice, we calculate ZTOT by approximating (18) via
Laplace’s method and evaluating the summation in (21) nu-
merically. The solid green line of Fig. 2 is a plot of F̃ vs the
torque τ for the MP model. This free energy closely matches
the stretched and plectonemic free energy sufficiently far from
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the transition region τ = τ ∗ but it exhibits a smooth transition
rather than the sharp crossing predicted by the two-phase
model.

To relate measurements carried out in the fixed linking
number ensemble to predictions from our theoretical model
calculated within the fixed torque ensemble, we note that the
first moments in the two ensembles are equivalent. One can
calculate the mean supercoiling density by differentiation of
the free-energy density,

〈σ 〉 = − 1

ω0

∂F̃
∂τ

. (23)

The central observables of interest in this work are the mean
number of plectonemes 〈n〉 and the plectoneme length distri-
bution Ppl(l ). The former is given by

〈n〉 =
∑

n nZ (n)

ZTOT
, (24)

while the latter is found as the relative weight of those con-
figurations containing at least one plectoneme of length l . For
this, we calculate the subensemble partition function Z (n, l ),
for states containing n plectonemes of which one has fixed
length l . Note that this does not affect the enthalpic term (13)
nor the positional entropy (14). However, for this subensemble
the length partitioning entropy is now given by

�∗
n(Lp, l ) = n

(n − 2)!

(
Lp − (n − 1)lc − l

�l

)n−2

. (25)

This is analogous to Eq. (16) because it describes the different
ways one can partition the free length Lp − l among n − 1
plectonemes. Furthermore, we included a factor n because any
of the n plectonemes is allowed to have length l . Hence the
partition function is found to be

Z (n, l ) =
∑

Lp

e−βFenth.(L,Lp,n)�n(Lp)�∗
n(Lp, l ), (26)

where the sums runs over multiples of �l for (n − 1)lc + l �
Lp � L. Finally, the probability of having a configuration in
which at least one of the plectonemes has length l is

Ppl(l ) = 1∑nmax
n=1

∑L−nlc
l=lc

Z (n, l )

nmax∑
n=1

Z (n, l ) (27)

The theory developed here differs from prior approaches
[43,44] by replacing the geometric description of the plec-
toneme state with a phenomenological plectoneme free energy
P̃ , fitted from independent umbrella sampling simulations
[32], which allows us to cast the description in a much-
simplified form. The difference between our P̃ and the free
energy according to the theory of Marko and Neukirch [44] is
discussed in some detail in Appendix B.

An alternative theoretical approach, based on a transfer ma-
trix (TM) calculation, is described in Appendix C. While the
TM and MP models show good agreement for several physical
quantities, they are individually subject to distinct limitations.
In the TM formalism, it is not straightforward to impose the
smallest possible length for plectonemes lc, which leads to a
systematic overestimation of the mean number of plectonemes
due to the counting of unphysically small plectonemic re-
gions. However, it is possible to correct this overestimation by

calculating the fraction of plectonemes below the length cut-
off from the theoretical plectoneme length distribution. After
applying the correction, the results of the MP and TM models
are found to be in excellent agreement. Details are provided
in Appendix C. The advantage of the TM approach is that it
has a simpler analytical structure than the MP model. As a
consequence, this model permits the analytical description of
quantities that cannot be derived directly from the MP model.
An example of this is the characteristic plectoneme length ξ

(see discussion in Appendix C).

III. MONTE CARLO SIMULATIONS

We performed Monte Carlo (MC) simulations based on the
elastic Hamiltonian of the twistable wormlike chain (TWLC)
discretized to 10 bp (or 3.4 nm) per monomer. This model
features only two free elastic parameters: the bending modu-
lus A and the twist modulus C, which—following the general
choice in this work—were set to 40 and 100 nm, respec-
tively. Electrostatics and steric hindrance are modeled via
hard sphere potentials of radius 2 nm associated with each
monomer. This radius was chosen to mimic the behavior of
DNA under physiological ionic conditions [47], i.e., roughly
150 mM monovalent salt. In previous work, this hard-sphere
radius, in conjunction with the mentioned elastic constants,
was found to yield the best agreement with experimental
single-molecule measurements [18]. Configurations are gen-
erated via a series of cluster moves as described in [18].
Simulations are conducted in the fixed linking number ensem-
ble. This is facilitated by detecting and subsequently rejecting
topology-violating moves and by including repulsion planes
(via hard-wall potentials) normal to the force director field,
which move in tandem with the chain termini. Further details
about the model are provided in Refs. [32] and [18].

All simulations were conducted for molecules of length
7920 bp, which translates into 792 beads at the aforemen-
tioned resolution and a contour length of L = 2692.8 nm. Six
different forces were considered, ranging from 0.4 to 1 pN.
For each force, we examined a range of supercoiling densities,
from zero to values well beyond σp, the supercoiling density
at which the entire chain is expected to be in the plectonemic
phase. Configurations from two such simulations are depicted
in Figs. 4(a) and 4(b).

Accurate sampling of quantities such as the mean num-
ber of plectonemes and the plectoneme length distribution
requires generating uncorrelated configurations. At high su-
percoiling densities, where most of the molecular length
is contained within plectonemic regions, rearranging plec-
tonemes along the chain requires substantial confluence of
individual Monte Carlo moves. Consequently, sampling—
especially at large forces, where plectonemic coiling is
tight—becomes very inefficient. Simulations effectively re-
main stuck in their given configurations for a large number
of MC moves. The decrease in sampling efficiency due to
enhanced coiling density induced by the force is illustrated
in the kymographs of Figs. 4(c) and 4(d), which display the
location of plectonemes as shaded regions. For f = 0.5 pN
[Fig. 4(c)] the MC algorithm refreshes the distribution of
plectonemic regions along the chain quite frequently, while
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FIG. 4. Snapshots of configurations generated with MC simulations for molecules of 7920 bp (length L = 2692.8 nm) for (a) f = 0.5 pN,
σ = 0.04 and (b) f = 1.0 pN, σ = 0.05. (c), (d) Kymographs showing the position of plectonemic domains (depicted as dark regions) for
the full simulations from which the snapshots shown in panels (a) and (b), respectively, were taken. At f = 0.5 pN the algorithm facilitates
frequent changes in the location and number of plectonemes, while large-scale configurational changes are difficult to attain at f = 1.0 pN.

the f = 1 pN [Fig. 4(d)] simulation exhibits only a handful of
large-scale rearrangements.

To boost sampling efficiency, we employed an enhanced
sampling method we term topological exchange sampling,
which is similar to the approach used by Krajina and
Spakowitz [48] to study the conformational statistics of su-
percoiled circular DNA. Simulations of all considered linking
numbers corresponding to the same force are run concurrently.
At regular MC step intervals, attempts are made to exchange
configurations between neighboring linking number states.
The linking number in the two corresponding configurations
is adjusted uniformly by modifying the twist to fit the respec-
tive ensemble. Exchanges are accepted based on the usual
Metropolis criterion. This type of configuration exchange
allows highly congested configurations to migrate into low
supercoiling density states, where configurational refreshing
is efficient. Even with enhanced sampling, simulations of
forces beyond 1 pN yielded poor statistics, which prompted
us to limit the range of considered forces to this value.

A. Evaluation of Monte Carlo simulations

Plectonemic regions are identified based on their contri-
bution to the total writhe of the configuration. Writhe is a
quantity that measures the amount of coiling of a closed
curve around itself. Large writhe density is therefore a dif-
ferentiating property of plectonemic supercoils, setting them
apart from the comparably low writhe density stretched phase.
Mathematically, writhe is expressed as a double integral along
a closed curve [12,49]. In the context of discrete chains, this
can be reduced to a double sum [32,50]

Wr =
N∑

i=1

N∑
j=1

ωi j, (28)

over the pairwise contributions ωi j , representing double line
integrals over pairs of straight segments (see Ref. [50] for
details). We refer to previous work for a more detailed de-
scription of the plectoneme detection algorithm. As a final

condition, we classify only those regions as plectonemes that
contribute at least one unit of writhe.

Torque can be directly measured in simulations by con-
straining the rotational state of the last bead within a harmonic
potential, similar to the torsional traps used to measure torque
in magnetic torque tweezer experiments [37]. This method
allows for precise control and measurement of torque. Alter-
natively, the average torque can be calculated from the twist
strain using the formula:

τ = 2πkBTC

L
〈�Tw〉, (29)

where �Tw is the accumulative excess twist along the
molecule. Experimentally, one is limited to the readout and
manipulation of the magnetic bead, which does not provide
access to the precise twist state of the molecule. In contrast,
our simulations yield detailed information about the twist state
and other properties, allowing us to deduce these by direct
observation.

B. Number of plectonemes and torque

Data sampled with the MC simulations for the extension,
mean number of plectonemes, and torque for the range of
forces and supercoiling densities considered are displayed
in Figs. 5(a)–5(c), respectively. The extension exhibits the
well-documented quadratic decrease for small supercoiling
densities—as described by the theory of chiral entropic elas-
ticity [38]—followed by a nearly linear decrease in the
post-buckling regime related to the conversion of stretched
phase to plectonemes. Plectonemes are most numerous at low
forces, see Fig. 5(b). For any given force, the number of
plectonemes varies nonmonotonously with increasing super-
coiling density. As expected, no plectonemes are observed for
small σ (below the buckling point σs). Past the buckling point,
this number steadily increases until a maximum is reached
at a point roughly halfway through the postbuckling regime.
This point corresponds to an extension reduction of about
50% relative to the relaxed state of the corresponding force
(σ = 0). Beyond this maximum, 〈n〉 decreases steadily until
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FIG. 5. (a)–(c) Summary of comparison of MC simulation data (circles) with the MP model of Sec. II (solid lines) for various quantities.
Six different forces were simulated. The symbol colors in panels (a) and (b) follow the legend given in panel (c). (a) Average relative extension
〈z〉/L vs σ . (b) Average number of plectonemes 〈n〉 vs σ . (c) Average torque 〈τ 〉 vs σ . (b) The plectoneme nucleation free energy μ is a free
parameter in the MP model which can be obtained from fitting Eq. (24) to data of the average number of plectonemes. A plot of μ vs force is
shown in panel (d).

eventually converging to 〈n〉 → 1 in the pure plectonemic
phase. As outlined before, the best sampling is achieved for
small forces and low supercoiling densities, while sampling
becomes unreliable past the point of maximum number of
plectonemes for f = 1 pN.

The torque varies linearly with σ in the prebuckling
regime, see Fig. 5(c). Postbuckling, the torque response re-
mains nearly flat at higher forces but shows a pronounced
force dependence at lower forces. To highlight this force de-
pendence, we included simulation data for forces as low as 0.1
pN. MT studies have reported an abrupt buckling transition,
where the average extension sharply drops at the buckling
point, and a torque “overshoot” [22,51], both of which have
been predicted by both theory and simulations [44,52].

In our MC data, we observed a tiny signature of such
torque overshoot at the highest force analyzed f = 1.0 pN,
see encirclement in Fig. 5(c). The torque overshoot is related
to the energy barrier crossing of plectoneme nucleation and
is therefore a finite-size effect. Accordingly, it is most visible
for short molecules (<2 kbp) and strong forces [44]. Lastly,
we note that for all considered forces the torque appears to
converge to a single curve once approaching the fully plec-
tonemic state.

To compare the MP model to the MC simulations we
invoke higher-order corrections to the free-energy densities
of stretched and plectonemic phase [Eqs. (1) and (2)]. These
corrections introduce two additional parameters that have
been determined by independent free-energy calculations in
previous work, see Appendix A and Ref. [32] for a deeper
discussion.

The only remaining free parameters in the model are the
smallest possible plectoneme size lc and the plectoneme nu-
cleation free energy μ, both of which can be determined from
MC data. The value of lc can be estimated from plectoneme
length distributions obtained from MC simulations which will
be discussed in detail in Sec. III C. Once lc is fixed as a
function of force, μ can be determined by fitting the model
to the MC data.

In principle, any observable can be used for the fit, how-
ever, we find the number of plectonemes to be most sensitive
to μ, therefore yielding the lowest uncertainty for the fitted
parameter. The extension is found to be almost entirely in-
sensitive to μ, while torque is only sensitive to μ for small
forces, where the high-force expansion free energies [Eqs. (3)
and (4)] become unreliable. There is, however, a caveat in em-
ploying 〈n〉 as a basis for fitting μ in that the MC results for 〈n〉
depend on the cutoff writhe used to classify plectonemes. This
introduces an additional layer of uncertainty on μ. Regardless,
〈n〉 yields the most direct access to μ. As described above,
we consistently used a cutoff value of one unit of writhe
to classify plectonemes. Furthermore, numerical values of μ

always defer to a particular choice of the discretization length
�l . Changing the discretization length from �l to �l ′ in turn
changes μ to μ′ following

μ′ = μ + 2kBT log

(
�l

�l ′

)
. (30)

In the above, the second term takes into account the gain and
loss of entropy when changing the mesh size of the system.
The resulting values of μ for individual stretching forces
with �l = 1 nm are displayed in Fig. 5(d). Previous work
suggests μ to scale as

√
f [43,44]. However, the relatively

small range of forces considered does not permit us to discern
this behavior from linear scaling. We, therefore, included fits
for both types of scaling. We note that the values we find for
μ cannot be directly compared with the tail-segment and end-
loop energies calculated by Marko and Neukirch [44] because
of the interpretational differences of the two approaches. We
touch on these differences in more detail in Appendix B.

Observables calculated with the MP model using values of
μ fitted from the average number of plectonemes are found
to incorporate all the aspects observed in the MC data, short
of the small torque overshoot for the 1 pN data [marked by
a small gray circle in Fig. 5(c)]. As shown in the torque vs
σ graph [Fig. 5(c)], the theory captures the deviations from a
first-order transition that manifests in the nonconstant torque
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FIG. 6. (a), (b) Comparison of plectoneme length distributions
from MC simulations (bars) and MP model as given by Eq. (27)
(solid lines) for three different σ and (a) f = 0.4 pN, (b) f = 0.8
pN. The dashed red line shows the plectoneme length distribution of
the subensemble with just one plectoneme. For small σ , plectonemes
are short and the length distributions are rapidly decaying. For large
σ , plectonemes are long and the distributions are peaked at lengths
close to the total length of the DNA molecule. MC data hardly extend
to lengths beyond Lp (gray area), given in Eq. (31). Distributions
calculated with the MP model extend to the entire length of the
molecule. This difference is due to the different ensembles used in
the two calculations, see discussion in the text.

in the coexistence region, corresponding to τ ∗ of Eq. (11) in
the quadratic model. For all forces, the torque curves are found
to eventually converge to the torque curve of the plectonemic
phase. This quantity can be obtained via differentiation of
the plectoneme free energy and is shown as a dashed line
in Fig. 5(c). The curvature of τp is a direct indication of
the breakdown of the quadratic approximation for P (ψ ) and
justifies the requirement of a quartic free energy extension, see
Eq. (A1).

C. Plectoneme length distribution

Plectoneme length distributions obtained from MC simu-
lations (bars) and the MP model (solid lines) are shown in
Figs. 6(a) and 6(b). The data correspond to three separate
supercoiling densities σ for two different forces: (a) f = 0.4
pN and (b) f = 0.8 pN. The theoretical curves of the MP
model are plotted using the corresponding values of μ [see
Fig. 5(d)], whereas lc is obtained from the sharp drop of
the plectoneme length distributions obtained for small plec-
toneme lengths (see Appendix D for details). While the theory
predicts a nonzero probability of finding plectonemes of the
longest possible length, i.e., the length of the entire molecule,
the simulations exhibit a sharp probability dropoff around
a particular and supercoiling density-dependent length. This
discrepancy stems from the difference in the considered en-
semble. The simulations are conducted in the fixed linking
number ensemble, where, for a given σ , the length fraction

stored in the plectonemic state is expected to be [32,39]

Lp = (1 − 〈ν〉)L = σ − σs

σp − σs
L. (31)

Unless σ is close to σp, the probability of Lp to fluctuate
to L is exceedingly unlikely (for details see, e.g., Ref. [32]).
The theory, on the other hand, is derived in the fixed torque
ensemble, which permits linking number fluctuations. Since
torque differences are generally small [except for the smallest
of forces; see Fig. 4(c)], linking number fluctuations can be
large, allowing plectoneme length fluctuations over the entire
possible range. The gray shaded region in Figs. 6(a) and 6(b)
indicates plectoneme lengths above Lp, confirming Eq. (31)
to provide an upper bound to plectoneme length fluctuations
observed in MC simulations.

For plectoneme lengths below Lp we find reasonable agree-
ment between the MC data and the MP model. For relatively
short plectonemes, the theory predicts an exponential plec-
toneme length distribution. The corresponding decay length
ξ constitutes the characteristic plectoneme length. While the
exponential decay cannot be directly derived from the MP
model due to its complex analytical structure, it can be ob-
tained analytically using the TM approach (see Appendix C).
The predicted characteristic plectoneme length from the TM
theory is in line with the results obtained from MC simulations
(as discussed extensively in Appendix C).

For sufficiently large σ both theory and simulation dis-
play a peak in the probability density close to the largest
observed length. This peak can be explained by consider-
ing plectoneme length distributions within subensembles of
a fixed plectoneme number. The dashed line shows the corre-
sponding distribution for the subensemble containing only a
single plectoneme, which illustrates that the peaks are a result
of these subensemble states.

IV. COMPARISON WITH EXPERIMENTS

The MC simulations used in this work were parametrized
to match linking number-dependent surface-bead distances
and variances measured with single-molecule magnetic
tweezers for 7.9 kb DNA tethers, see Ref. [18] for details.
An interesting prediction of the theory and the MC simula-
tions is the nonflat torque response observer for low forces
in particular (also predicted by Emanuel et al. [43]). We
compare these results with optical tweezer measurements of
DNA tethers reported by Gao et al. [45]. Figure 7 shows the
relation of torque vs supercoiling density for forces ranging
from 0.25 to 5 pN. The model developed in this paper (black
line) is coplotted with the experimental data (colored lines).
To produce the solid lines of Fig. 7 the MP model was used,
choosing A = 43 nm and C = 109 nm, as reported in Gao
et al. [45]. In addition, we used an alternate parametrization
of the plectoneme free energy by setting the coefficient of
the quadratic term P2 = 20 nm (see Appendix A). This is
higher than the value P2 = 14.4 nm used throughout the rest
of the paper. Notably, the value of P2 = 20 nm is very close
to the value of the effective torsional stiffness for the lowest
measured force in Ref. [45].

While it is difficult to observe a signature of multiplec-
tonemes from the higher forces, the f = 0.25 pN data are
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FIG. 7. Comparison between experimental measurements (sym-
bols) of torque in function supercoiling density and the results from
the MP model (solid lines), as obtained by inverting Eq. (23). For the
theoretical curves, we used A = 43 nm and C = 109 nm as reported
in Ref. [45]. The plectoneme free energy was parameterized using
P2 = 20 nm and P4 = 520 nm. Experimental data are from Ref. [45],
courtesy of M. Wang.

found to closely align with the MP model. Unfortunately, due
to technical issues arising when the magnetic bead comes
into proximity with the flow cell surface, the experimental
data are limited to comparably small values of σ . It would
be interesting to experimentally verify the torque response in
a wider range of supercoiling density to corroborate the con-
vergence into a single torque curve as predicted by the theory.
Such a measurement would give direct access to the free-
energy landscape of the plectoneme phase.

Lastly, we turn to a set of experimental data that gives
direct access to plectoneme statistics. Van Loenhout et al. [25]
developed an MT setup that allows for the sideway pulling
of fluorescently labeled DNA molecules and the subsequent
visualization of the DNA contour via epi-fluorescence. Plec-
tonemes appear as bright spots as they correspond to regions
of high DNA density. Using this setup, it is possible to locate
plectoneme positions and follow their dynamics in real time.
The quoted study used 21 kb DNA molecules. We first verify
the validity of our theory vis-à-vis the experimental data by
comparing measured and theoretical extension as a function
of applied force and supercoiling density, see Fig. 8(a). The
theoretical curves were constructed with the same parameters
as used to compare to MC data. The observed agreement
attests to the quality of the model parametrization.

Average plectoneme numbers 〈n〉 vs applied force are
shown in Fig. 8(b). Experimentally considered supercoiling
densities were specifically selected such that 25% of the DNA
length is contained in the plectonemic phase [see circles in
Fig. 8(a)]. We used the MP model to compare the average
number of plectonemes 〈n〉 to the experimental data of Ref.
[25]. Values of μ and lc are chosen by extrapolating the√

f fit from Figs. 5(d) and 13(b), respectively. To ensure
comparability to experiments, the MP model was evaluated at
torques for which Lp amounted to 25% of the DNA molecule’s
contour length. Figure 8(b) indicates the theory (solid line)
to predict a considerably larger number of plectonemes for
the experimentally considered molecule length and force and
supercoiling density conditions than experimentally observed.

FIG. 8. (a) Comparison between experimental force-extension
curves (symbols) taken from Ref. [25] and results obtained from the
MP (solid lines) for a 21 kb DNA. The circles indicate the condi-
tions under which the fluorescence measurements were performed.
(b) Mean number of plectonemes as a function of force obtained
from fluorescence microscopy measurements [25] and according
to the MP model from Eq. (24). Dashed lines are obtained from
Monte Carlo sampling the MP model (MC-MP) in conjunction with a
minimal plectoneme detection length l∗ (thus plectonemes of lengths
l > lc are generated, but only those with length l > l∗ are counted in
the calculation of 〈n〉). Results indicate that the experimental resolu-
tion of Ref. [25] is limited to plectonemes of about 1 kb in length.
For the MP model and the MC-MP we used A = 40 nm, C = 100
nm, P2 = 14.4 nm, and P4 = 520 nm as for the MC simulations in
Fig. 5. The small differences between these parameters and those
used to fit the data of Gao et al. [45] (Fig. 7) might be related to the
difference in buffer conditions of the two experimental setups.

This result is consistent with previous Monte Carlo simula-
tions by Lepage et al. [27]. Moreover, the MP model predicts
the mean number of plectonemes 〈n〉 to decay rapidly with the
applied tension f , while experimental observation suggests
much lower force dependence.

This discrepancy might be attributed to the limited exper-
imental resolution, which does not allow for the observation
of short plectonemes. To further investigate the typical plec-
toneme detection limit in the experiment, we sampled MP
model configurations using a Monte Carlo algorithm (referred
to as MC-MP). This algorithm starts from a DNA chain that
is fully in the stretched phase. Its configuration is updated
by either randomly selecting a single site and changing its
state from the S(P)-phase to P(S)-phase or by selecting a
range of sites and changing their states collectively. Moves
that generate plectoneme domains smaller than lc are immedi-
ately rejected. Otherwise, changes made are accepted/rejected
according to the Metropolis rule. The dashed colored lines
in Fig. 8(b) are MC-MP simulation data in which a cutoff
length l∗ is used to detect plectonemes, meaning that only
plectonemes of length longer than l∗ are considered in the
determination of 〈n〉. As shown in Fig. 8(b), the MC-MP data
is in reasonable agreement with experiment when a minimal
plectoneme detection length of l∗ = 0.9 kb is used. Under
these conditions, the theory predicts the average number of
plectonemes to be weakly dependent on force, as is appar-
ent from the experimental data. This potentially suggests the
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fluorescence measurements to be sensitive only to plec-
tonemes of size larger than approximately ≈1 kb, while
shorter plectonemes may evade detection. This effect would
be most prominent for small forces, where plectonemes are
preferentially short and numerous.

V. CONCLUSION

In this paper, we presented the results of MC simulations
of stretched and torsionally constrained DNA, modeled as a
bistable wormlike chain. DNA molecules were represented as
a series of coarse-grained beads (each corresponding to 10
bp) characterized by bending and torsional stiffnesses, cho-
sen to reproduce experimental data of bending and torsional
persistence lengths. We analyzed the statistical properties
of plectonemes, which form along the molecule once it is
over- or underwound. Using an algorithm developed in prior
work [32], we detected the number of plectonemes and their
lengths for configuration snapshots from an MC-generated
equilibrium ensemble at a fixed linking number and stretching
force. In parallel, we developed a statistical mechanical model
of stretched supercoiled DNA which we referred to as MP
model. This model is a simple extension of the two-phase
model of Marko [39]. An excess free-energy term is intro-
duced as the penalty for the interface between a stretched
DNA and a plectonemic domain. All parameters of the MP
model, except the phase boundary free energy and plectoneme
length threshold, were determined in prior studies that fo-
cused on other properties of supercoiled DNA [18,32]. The
two-phase model was proven to capture several features of
stretched and torsionally constrained DNA [39], including
extension fluctuations [18,32]. Here we showed the model to
quantitatively reproduce multiple features observed in sim-
ulations, such as the average number of plectonemes and
their length distribution. The agreement with simulations is
remarkable because the model contains only two adjustable
parameters, which makes it more accessible than more so-
phisticated approaches proposed in the prior literature [43,44].
We have also discussed a simpler transfer matrix-based ap-
proach, which is in good agreement with the full model, see
Appendix C.

The main difference between our theoretical approach and
previous such attempts is the use of a phenomenological
plectoneme free energy in the form of a quartic polyno-
mial. Previous approaches used more detailed geometric
descriptions accounting for elastic, entropic, and electrostatic
contributions [43,44]. A discussion of these terms is given
in Appendix B, which also shows a comparison with the
phenomenological free energy employed in this paper. The
microscopic and phenomenological free energies are in good
quantitative agreement, but stronger deviations are observed at
small supercoiling densities, a regime in which plectonemes
are loose and highly fluctuating in shape. Constructing a
good quantitative microscopic model in this regime remains
challenging.
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APPENDIX A: HIGHER-ORDER EXTENSIONS

For the analysis of simulation data, we extended two fea-
tures of the free energies (1) and (2). We added a quartic term
in the supercoiling density ψ of the plectonemic free energy,
which was extended as follows:

P (ψ ) =
(

P2

2
ψ2 + P4

4
ψ4

)
ω2

0kBT . (A1)

The coefficients P2 and P4 were fitted to MC simulation data
in Ref. [32], using umbrella sampling and suitable boundary
conditions to induce a pure plectonemic phase. As the super-
coiling density ψ is dimensionless P4 and P2 in (A1) have
units of length. Fitted free energies give P2 = 14.4 ± 0.3 nm
and P4 = 520 ± 30 nm [32]. It was not necessary to extend
the stretched phase free energy S (φ) given in (1), beyond the
quadratic term in φ. This is because stretched segments attain
a maximum value φ ≈ σs � σp. The need for a quartic term in
(A1) arises from the fact that plectonemes are characterized by
a large supercoiling density. However, we extended Eq. (3) to
the next order in the force f to better account for the low-force
regime. We used the following expansion [32]:

g( f ) = f

⎛⎝1 −
√

kBT

A f
+ g2

kBT

A f

⎞⎠. (A2)

Reference [32] reports g2 = 0.3, obtained from the numeri-
cally exact solution of a stretched wormlike chain [53] where
we took A = 40 nm and kB±T = 4.1 pN nm, corresponding
to room temperature. Note that the term proportional to g2

contributes to the stretched phase free energy as an overall
force-independent constant. This is important for the double
tangent construction because it gives a constant relative shift
to the stretched- and plectoneme-phase free energies.

APPENDIX B: COMPARISON WITH OTHER THEORIES

In this paper, we employed a phenomenological form of
the plectonemic free energy, which contains quadratic and
quartic terms in the supercoiling density, see (A1). In other
studies [43,44], the plectonemic free energy is derived from
a microscopic description of DNA supercoils. These models
assume that DNA supercoils can be adequately represented as
geometrically ideal superhelices characterized by a superhe-
lical radius r and an opening angle α. We compare here the
phenomenological free energy (A1) with the model by Marko
and Neukirch [44]. As (A1) describes the bulk free energy
per unit length of a very long plectoneme, we compare it to
that reported in Ref. [44], neglecting finite-size effects such
as end-loop contributions. In this limit, the plectoneme free
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FIG. 9. Comparison between Eq. (A1), the phenomenological
plectonemic free energy (solid, black), and Eq. (B2), the free en-
ergy obtained from the microscopic model of Marko and Neukirch
(MN) (dashed, blue). The parameters of the phenomenological free
energy are P2 = 14.4 nm and P4 = 520 nm, as used throughout this
work. The gray dotted lines indicate σp for a stretching force of
0.4 and 1 pN, indicating that the discrepancies of the microscopic
model become more important for small stretching forces. For the
MN theory, we used the parameters A = 40 nm, lB = 0.7 nm, ν =
8.8558 nm−1 and k−1

D = 0.79 nm, mimicking a salt concentration of
150 mM monovalent salt and a temperature of 296.5 K, as reported
in Ref. [44].

energy per unit length of the Marko-Neukirch model is [44]

βPMN(ψ, r, α)

= 2π2C
[ ω0

2π
ψ − wp(r, α)

]2

+ A
sin4(α)

2r2
+ lBν2K0(2kDr) + r−2/3

2A1/3
. (B1)

The first term describes the energetic cost associated with
twisting of the DNA molecule, with ω0ψ/2π the excess link-
ing number per unit length and wp the writhe per unit length of
a regular superhelix (as in the rest of the paper C denotes the
DNA torsional stiffness). The second term, proportional to the
bending stiffness A, describes the energetic bending cost. The
third term is the electrostatic repulsion with K0 the modified
Bessel function of zeroth order, lB = 0.7 nm the Bjerrum
length, ν = 8.8558 nm−1 the effective charge and k−1

D = 0.79
nm the Debye length. Finally, the last term is the entropic
confinement contribution to the free energy [3,54]. In order
to obtain the plectonemic free energy as a function of super-
coiling density, Eq. (B1) is minimized with respect to r and α

P (ψ ) = min
α,r

PMN(ψ, r, α). (B2)

The results of this minimization are shown in Fig. 9 (dashed,
blue) together with (A1) the phenomenological free energy
used throughout this work (solid, black). There is good
agreement between the two free energies at high supercoil
densities, while some deviations are observed at low supercoil
densities ψ < 0.07. The typical plectonemic supercoiling
density can be estimated from the values of σp obtained from

the two-phase model double tangent construction or from the
coexistence condition in the torque ensemble S̃ (τ ∗) = P̃ (τ ∗).
The values for σp for two forces are shown in Fig. 9 as vertical
dashed lines. The discrepancies between the variational free
energy (B2) and the phenomenological one (A1) are probably
due to the former underestimating the plectoneme’s entropy.
At low supercoiling densities, a plectoneme is loose, and its
description as a regular superhelix with well-defined values
for radius r and angle α may break down. Such description
seems to be more accurate at high supercoiling densities when
plectonemes are tight and fluctuations less relevant.

Marko and Neukirch [44] further provided an empirical
formula for the combined energetic cost of the plectoneme
end loop and the tail segments [see last term in Eq. (5) of their
work]. Unfortunately, this energetic cost may not be directly
compared to the interface term μ from the present work as
the former contains contributions that are already implicitly
contained in the effective plectoneme free energy P (σp). It
is not obvious how these contributions can be disentangled,
and any such attempt, short of the careful analysis of the
geometry and local energetics of the MC generated config-
urations, would be subject to crude assumptions that render
any drawn conclusions overly circumstantial. Such analysis
goes far beyond the scope of the current work and could be
the subject of a dedicated study.

APPENDIX C: TRANSFER-MATRIX APPROACH

An alternative approach to the multiplectonemic-phase free
energy is based on the following 2 × 2 transfer matrix (TM):

T =
(

s wp
ws p

)
, (C1)

where s and p are the weights of the two phases

s = exp(−β�lS̃ ),

p = exp(−β�lP̃ ), (C2)

corresponding to a discretization length �l . The term w < 1
is the additional weight associated with the interface between
stretched and plectonemic segments. This is linked to the
interfacial free energy μ of (13) through the relation

w = e−βμ/2, (C3)

assuming the same choice of �l as in the multiplectoneme
model. For different choices of �l , μ rescales according to
Eq. (30), see discussion below.

This TM approach is identical to the Zimm-Bragg model
used to describe the helix-coil transition in polypeptides [55]
and is also often used to describe two-state transitions of
single molecules; see, e.g., Ref. [56] for a recent example. The
TM matrix multiplication generates the Boltzmann weights
of all possible configurational permutations of stretched and
plectonemic segments. For example, a configuration contain-
ing two plectonemes of size m�l and q�l (separated by a
stretched phase of length r�l) has weight

skwpmwsrwpqwst , (C4)

with two stretched segments of length k�l and t�l at the
ends of the molecule. The integers k, m, r, q and t are such
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that k + m + r + q + t = N with N�l the total length of the
DNA. In the calculation, we impose two stretched segments
at the two ends of the molecule. This choice of boundary
condition reflects the MT setup in which the tethering of the
DNA to the bead and the surface imposes certain constraints
inhibiting the nucleation of plectonemes at the DNA termini.
The corresponding stretched-stretched partition function for a
molecule of length N�l is given by

Zss(N ) = s(1 0)T N−1

(
1
0

)
= s − λ−

λ+ − λ−
sλN−1

+ + λ+ − s

λ+ − λ−
sλN−1

− , (C5)

where λ± are the eigenvalues of T ,

λ± = 1
2 {s + p ±

√
(s − p)2 + 4w2sp}. (C6)

To obtain (C5), we used the decomposition(
1
0

)
= 1

wp

[
s − λ−

λ+ − λ−
v+ + λ+ − s

λ+ − λ−
v−

]
, (C7)

where

v± =
(

wp
λ± − s

)
, (C8)

are the eigenvectors of T corresponding to the eigenval-
ues λ±. Using some elementary algebra from (C5), one
gets for N � 4: Zss(1) = s, Zss(2) = s2, Zss(3) = s3 + s2 pw2

and Zss(4) = s4 + 2s3 pw2 + s2 p2w2, showing that with the
stretched-stretched boundary conditions, a plectoneme can
appear only for lengths N � 3 and has maximal length (N −
2)�l . For very high supercoiling densities σ 
 σp [or p 

s and λ+ ≈ p + w2sp/(p − s), λ− ≈ s − w2sp/(p − s), ne-
glecting higher order terms in w2] the partition function is
dominated by a single term Zss ≈ s2 pN−2w2.

In the TM formalism the free energy per unit length in the
thermodynamic limit is given by

F̃ = lim
N→∞

−kBT log Zss

N�l
= −kBT

�l
log λ+. (C9)

One can get the supercoiling density σ by means of a torque
derivative, see Eq. (23). An expression for the average number
of plectonemes can be obtained by differentiation with respect
to w2, i.e.,

〈n〉 = w2 ∂ log Zss

∂w2
. (C10)

This follows from the fact that each plectoneme comes with
an interfacial weight w2, therefore counting the plectonemes
is equivalent to counting the powers of w2 in every Boltzmann
weight in Zss. For instance, the weight (C4) is proportional
to w4, corresponding indeed to two plectonemes. Note that
the stretched-stretched boundary conditions impose that only
terms with even powers of w enter in the partition function.

The probability of finding a plectoneme of length m�l
embedded within a segment of stretched phase is given by

Ppl(m) = 1

Z∗
ss(N )

N−m−1∑
k=1

Zss(k)w2 pmZss(N − k − m), (C11)

where k�l is the entry point of the plectoneme along the
curvilinear length and Zss(k) is given by (C5). We use the
partition function

Z∗
ss(N ) =

N−2∑
m=1

N−m−1∑
k=1

Zss(k)w2 pmZss(N − k − m), (C12)

so that the distribution is properly normalized;∑N−2
m=1 Ppl (m) = 1. If plectonemes are shorter than the

whole molecule length, the distribution decays rapidly, and
the sum is dominated by the terms N − k 
 m and k 
 m.
Approximating Zss(k) ∼ λk

+, Zss(N − k − m) ∼ λN−k−m
+ one

finds the plectoneme lengths to be exponentially distributed

Ppl(m) ∼
(

p

λ+

)m

= e−m�l/ξ , (C13)

where the characteristic length ξ is given by

ξ = �l

log(λ+/p)
. (C14)

At the buckling point τ = τ ∗ one has s = p and therefore
λ+ = p(1 + w). The decay length (C14) becomes

ξ = �l

log(1 + w)
≈ �l

w
, (C15)

where we used w � 1, i.e., the interface between the straight
and plectonemic phases has a high energy cost and thus
very low probability. The previous equation shows how the
interfacial weight w can be obtained from the decay of the
plectonemes length distribution at the buckling point τ = τ ∗.

To understand the discretization length dependence in
Eq. (C3), we can use the TM multiplication as follows. Let
us consider starting from a given discretization length a and
indicate with s, p, and w(a) the weights corresponding to this
choice of length. The TM multiplication k times gives

T k ≈
(

sk w1(ka)pk

w2(ka)sk pk

)
, (C16)

where we kept the lowest terms in w(a), giving

w1(ka) = w(a)

(
1 + s

p
+ · · · + sk−1

pk−1

)
, (C17)

w2(ka) = w(a)

(
1 + p

s
+ · · · + pk−1

sk−1

)
. (C18)

Via block decimation, the production in (C16) defines a new
model with discretization length ka. In this model, the in-
terfacial weight for going from the stretched phase to the
plectonemic phase, w1, is different from the one going from
the plectonemic to the stretched phase, w2. Since all config-
urations satisfying the stretched phase boundary conditions
require the interfacial weights w1 and w2 to appear in pairs,
what matters is the average Boltzmann weight defined as

w(ka) ≡
√

w1(ka)w2(ka). (C19)

Close to buckling, τ ≈ τ ∗, the free energies of the stretched
and plectonemic phases are degenerate, hence s ≈ p and
w1(ka) ≈ w2(ka) ≈ kw(a) and thus

w(ka) ≈ kw(a). (C20)
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FIG. 10. Comparison of the multiplectoneme model (MP, solid
lines) and the transfer matrix model (TM, dashed line). All curves
were calculated for the same values of the stretching force f = 0.5
pN. (a) Plectoneme length distribution Ppl(l ) vs. length l in lin-log
scale. The inset zooms in on the short plectoneme length regime
in which Ppl(l ) of the TM model deviates from the MP model. The
MP model does not take into account plectonemes shorter than some
threshold length lc, whereas the TM model allows all plectoneme
lengths larger than the discretization length �l . (b) Average number
〈n〉 of plectonemes vs σ . (c) Torque τ vs σ .

This relation is equivalent to Eq. (30) and has a simple inter-
pretation: The multiplicative factor k accounts for the number
of different positions in which the interface between stretched
and plectonemic phases can be placed in a discretized segment
of length �l = ka. This implies that the weights of individual
segments must scale with the discretization length, w(�l ) ∝
�l . Note that this dependence cancels the �l factor in the
numerator in (C15).

Figures 10(a)–10(c) show a comparison of plectoneme
length distribution Ppl(l ), the average number of plectonemes
〈n〉 and torque vs supercoiling density as obtained from the
multiplectoneme model (MP) and the TM formalism ap-
proach. As discussed in the text, the former method allows
a direct incorporation of a minimal threshold length for a
plectoneme lc allowing for the discrimination of short unphys-
ical plectonemic domains. However, in the TM formalism,
plectonemes of all lengths above the discretization length �l
are generated. This can be seen in Fig. 10(a): the two models
predict identical length distributions, except for deviations at
small l where the TM approach (dashed line) predicts non-
vanishing probability down to the smallest possible length
scale (�l). Conversely, the introduction of the cutoff length
lc excludes such small lengths in the probability distributions
calculated with the MP model (solid line). The TM model
predicts a larger average number of plectonemes as compared
to the MP model [Fig. 10(b)] because the former counts very
short plectonemes, which are not generated in the MP model.
Both models are found to yield very similar estimates of
supercoiling densities σ , see Fig. 10(c), as short plectonemes
have negligible influence on global thermodynamic quanti-
ties. Moreover, we note the TM model and MP model yield
identical results if the minimum plectoneme length lc of the
MP model is set to equal the discretization length �l of the
TM model, provided �l is sufficiently small to adequately
capture positional entropy. Unfortunately, this requirement is
only satisfied for unphysically small values of lc.

FIG. 11. Mean number of plectonemes according to the MP
model (solid) and the TM model with (dotted) and without (dashed)
the correction η [Eq. (C21)] for various forces.

One can account for the overestimation of the mean
number of plectonemes in the TM model by introducing a
torque-dependent correction factor η which we define as

η(τ ) ≡
∫ L

lc

P(TM)
pl (l, τ )dl. (C21)

By integrating the TM model length distribution function from
lc to L, one excludes non-physical short plectonemes. We note
that, as the plectoneme length distribution is normalized, one
has η(τ ) � 1. The corrected average number of plectonemes
is defined as

〈n〉∗ ≡ η〈n〉. (C22)

This is expected to be a good approximation as long as length
correlations between distinct plectonemes can be neglected.
Figure 11 shows a comparison of the predicted mean num-
ber of plectonemes from the MP and TM models, with and
without the correction factor. The inclusion of η brings the
predictions into excellent agreement.

While the MP model is more appropriate to describe the
physics of the multiplectoneme phase, it has a more complex
analytical structure as it requires the calculation first of the
partition function of n plectonemes Z (n) from (18) which is
then summed over all n to get ZTOT, see Eq. (21). The TM
on the other side is simpler to handle as the thermodynamic
quantities are obtained from suitable derivatives of its eigen-
values λ±. As the TM and the MP model predict the same
decay of plectoneme length distribution, we employed the
latter [Eq. (C14)] to compute the decay length ξ for various
forces and supercoiling densities σ and compared them with
those calculated with the Monte Carlo simulations. The results
are plotted in Fig. 12 and show good overlap between theory
and MC simulations.

APPENDIX D: MINIMAL PLECTONEME SIZE lc

The MP model has two free parameters, the plectoneme
nucleation free energy μ and the minimal length of a plec-
toneme lc. The introduction of the latter is important to avoid
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FIG. 12. Plots of force-dependent characteristic decay lengths ξ .
Scatters indicate the values obtained by fitting the exponential decay
of the length distributions obtained with the MC simulations, and the
dashed lines show the theoretical predictions according to Eq. (C13).

consideration of very short plectonemic domains that would
be unphysical as the classification of such a domain requires
the formation of at least one loop. We determined values of
lc in a force-dependent manner based on the MC simulations.
At short lengths [see Fig. 13(a)], the length distributions rise
sharply at well-determined values, independent of supercoil-
ing density, but depending on the stretching force. We extract
the value of lc by fitting a cubic spline through the initial rise
of the probability density and extracting the value of the length
at which Ppl(l ) reaches half of its first local maximum. Follow-
ing this procedure, the force dependence of lc was obtained
[see Fig. 13(b)]. To allow for the inter- and extrapolation of lc

FIG. 13. (a) Plectoneme length distribution for a stretching force
of 0.4 pN for supercoiling densities in the interval [0.021, 0.0815]
as obtained from MC simulations (circles) along with interpolating
cubic splines (dashed lines). The length distributions are rescaled
to align at their local maxima. The minimal plectoneme length lc

is chosen as the mean-half maximum of the length distributions for
a given force. (b) Force dependence of lc. The error bars indicate
the standard deviation of lc determined for different supercoiling
densities. The dashed line indicates the result of fitting Eq. (D1) to
the deduced values of lc.

we fitted the available values of lc as a function of f with an
empirical equation of the form:

lc( f ) = x0 + x1

√
kBT

A f
, (D1)

where the numerical constants x0 and x1 were found to be 41
and 134 nm, respectively. We note that the scaling of lc with
1/

√
f is in agreement with the scaling of the plectoneme loop

size [44].
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