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About three-quarters of eukaryotic DNA is wrapped into nucleosomes; DNA spools with a protein core. The
affinity of a given DNA stretch to be incorporated into a nucleosome is known to depend on the base-pair
sequence-dependent geometry and elasticity of the DNA double helix. This causes the rotational and translational
positioning of nucleosomes. In this study we ask the question whether the latter can be predicted by a simple
coarse-grained DNA model with sequence-dependent elasticity, the rigid base-pair model. Whereas this model
is known to be rather robust in predicting rotational nucleosome positioning, we show that the translational
positioning is a rather subtle effect that is dominated by the guanine-cytosine content dependence of entropy
rather than energy. A correct qualitative prediction within the rigid base-pair framework can only be achieved
by assuming that DNA elasticity effectively changes on complexation into the nucleosome complex. With that
extra assumption we arrive at a model which gives an excellent quantitative agreement to experimental in vitro
nucleosome maps, under the additional assumption that nucleosomes equilibrate their positions only locally.
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I. INTRODUCTION

DNA in eukaryotic cells is compacted with the help of pro-
teins into the hierarchical chromatin complex. Details of the
higher levels are not yet well understood, even though there is
currently rapid progress [1]. The first level of complexation,
however, is known in great detail. It consists of the basic
repeated structure, the nucleosome, involving a short stretch
of DNA, 147 base pairs (bp) in length, wrapped in 1-3/4 turns
around a cylindrical aggregate of eight histone proteins. This
results in a disk-shaped particle with a diameter of 11 nm and
a height of 6 nm [2]. A short stretch of DNA, called the linker,
connects to the next such protein spool.

DNA is a rather stiff molecule with a persistence length
of about 150 bp or 50 nm. Therefore, wrapping DNA into a
nucleosome is rather costly as it involves about one persis-
tence length to be bent nearly two turns. This huge bending
cost is compensated by the binding of the DNA backbones
to the histone octamer at 14 binding sites [2]. The bending
cost shows a strong dependence on the sequence-dependent
geometry and elasticity of the involved DNA stretch, whereas
the binding occurs mainly to the DNA backbones whose
chemistry does not depend on sequence. This suggests that the
affinity of a given DNA sequence to be part of a nucleosome
reflects mainly the ease with which the DNA is wrapped
into a nucleosome. This allows for mechanical cues to be
written along DNA molecules, telling nucleosomes where to
sit and where not to sit, sometimes called the “nucleosome
positioning code” [3] (for earlier versions of this idea see, e.g.,
Refs. [4] and [5]).

The nonuniform, sequence-dependent positioning of nu-
cleosomes along genomic DNA can be clearly observed by
reconstituting nucleosomes from their pure components, DNA

and histone proteins, via salt dialysis and then producing
nucleosome maps using genomewide assays that extract DNA
stretches which were stably wrapped into nucleosomes (see,
e.g., Ref. [6]). A typical quantity to be determined is the
nucleosome occupancy at each base-pair position which is
the probability that the corresponding base pair is covered
by a nucleosome. One finds two types of nucleosome posi-
tioning along DNA: rotational and translational positioning
[7]. Rotational positioning reflects the fact that a given DNA
stretch is typically not intrinsically straight due to the intrinsic
geometries of the involved base-pair steps. This results in
a local preference for the nucleosome to sit in a certain
orientation on the DNA, leading to sets of positions 10 bp
apart, reflecting the DNA helical repeat. Translational posi-
tioning is caused by DNA stretches that have overall a higher
affinity for nucleosomes. This is known to correlate well with
their GC content, i.e., the fraction of nucleotides in a DNA
sequence that are guanine (G) or cytosine (C) [8–12]; the
physics underlying this sequence preference is the subject of
the current study. Examples for such translational mechanical
cues are nucleosome-depleted regions before transcription
start sites in yeast facilitating transcription initiation [6,12],
mechanically encoded retention of a small fraction of nucleo-
somes in human sperm cells allowing transmission of paternal
epigenetic information [13] or the positioning of six million
nucleosomes around nucleosome-inhibiting barriers in human
somatic cells [11].

Of importance is also the fact that histone octamers can
spontaneously “slide” along DNA [14] and therefore sample
different positions, allowing for (a rather slow) equilibration
of nucleosomes, at least locally. Two mechanisms have been
suggested, both are based on thermally induced defects inside
the nucleosome: single base-pair twist defects (a missing
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or an extra base pair) [15–17] and 10-bp bulges [18,19].
New simulation studies [20,21] strongly suggest that both
mechanisms can be at play and that it depends on the un-
derlying base-pair sequence which one is preferred for a
given DNA stretch. In vivo there are in addition chromatin
remodellers at work that use adenosine triphosphate to move
nucleosomes along DNA. New experiments [22–24] and
simulations [25] suggest that at least some of them induce
twist defects in the nucleosome. Chromatin remodellers might
help nucleosomes to equilibrate their locations along DNA
[26], but they might also perturb the intrinsically preferred
positioning of nucleosomes, together with other proteins that
compete for DNA target sites [10].

There is wide range of questions that need to be answered
when considering nucleosome positioning and the underlying
physical mechanisms. Restricting ourselves to the in vitro
situation (neglecting the more complex in vivo case), we may
ask: Is it the base pairs’ shapes or stiffnesses or both that
underlie translational and rotational positioning? Can nucleo-
somes reconstituted on genomic DNA be described as an equi-
librium ensemble or are the “sliding” mechanisms typically
too slow to allow for global equilibration? Are nucleosome
models based on a DNA representation with local deformation
energies like the rigid base-pair model [27] (the latter is used
in Refs. [12,28–43]) sufficient to predict translational and
rotational nucleosome positioning?

We have used a series of simulations [38,40] and analytical
approaches [42] to study some of these questions; also a
probabilistic model [12,43] informed by a simulation [38] is
used. All our models are based on the rigid base-pair model
for the DNA double helix and we force this model into a shape
that resembles conformations of nucleosomal DNA. These
kind of models are particular successful in predicting the
rotational positioning of nucleosomes [38,41,42] as they re-
cover the well-known nucleosome base-pair step preferences
[3,5], e.g., the preferences of GC steps for locations where
the DNA major groove faces inward. We were able to explain
these sequence rules as a consequence of the requirement of
sequence continuity (e.g., after a GC step must follow a step
that starts with C), often going against the sequence prefer-
ences of individual base-pair steps [42]. Importantly, we found
that rotational sequence preferences are mainly caused by
the intrinsic shape of base-pair steps, whereas differences in
softness can be neglected [42] (also a different computational
model came to this conclusion [44]). In addition, using these
models we demonstrated that rotational positioning cues can
be put freely even on top of genes as the genetic code is
degenerate [38,43].

Our model showed also close agreement with the transla-
tional positioning of nucleosomes [12]. We have, however, not
yet performed a critical analysis of the underlying physical
mechanism that causes the sequence preferences of nucleo-
somes for GC-rich DNA. It is the purpose of the current study
to perform this analysis. We demonstrate that translational
positioning of nucleosomes, at least within the rigid base-pair
model, is a rather subtle effect related to the overall higher
softness of GC-rich sequences. Surprisingly, however, if we
consistently account for the entropy cost in the free DNA, our
previous models cannot capture the observed GC preference.
However, we find that it is indeed possible to come to a

consistent framework to quantitatively predict translational
nucleosome positioning using the rigid base-pair model. To
achieve this, we introduce a multiharmonic model which uses
the two distinct sets of parameters for nucleosomal and free
DNA, respectively obtained from protein-DNA cocrystals and
all-atom molecular dynamics (MD) simulation. This is based
on the recognition that a single harmonic approximation to
the DNA may not be accurate enough to represent diverse
conditions such as those of free and nucleosomal DNA.
Instead, each DNA region is parametrized using a set of the
DNA conformations obtained under similar conditions.

The paper is organized as follows: In the next section we
introduce our coarse-grained nucleosome model together with
a Markov-chain approach to calculate the sequence affinities
of this model. In Sec. III we identify the origin of the GC
content dependence of this model. This insight requires to
account for the entropy change that results from wrapping
DNA into a nucleosome, undermining the GC content de-
pendence of past models, see Sec. IV. By comparing the
predictions of different models, we show that only the new
multiharmonic model can explain the nucleosome preference
for sequences with high GC content. In Sec. V we study the
possibility that the GC preferences of real nucleosomes might
actually reflect their dislike for poly-dA:dT sequences which
are particularly stiff, an effect that cannot be accounted for by
our DNA model with local energies. After showing that there
is a genuine preference of real nucleosomes for GC-rich DNA,
we compare experimental observations with the predictions of
our new model, showing that reaching a quantitative agree-
ment requires taking into account the nonequilibrium features
of reconstituted nucleosomes. We finish with a Conclusions
section.

II. MODEL

We employ the same nucleosome model as in our previous
work [37–41]. We stress, however, that the results of this
study shed also light on other models that employ the same
DNA model, namely Refs. [28–36]. In our (and these other
models) the DNA molecule is represented by the rigid base-
pair model [27] which treats each base pair as a rigid body, the
spatial position and orientation of which are described by six
(three translational and three rotational) degrees of freedom. It
assumes only nearest-neighbour interactions with a quadratic
deformation energy between successive base pairs [27]. The
elastic energy of an N + 1-bp-long chain is then given by

Hpot({xa}) =
N∑

a=1

∑
i, j

(
xa

i − xa
0, i

)
Ka

i j

(
xa

j − xa
0, j

)
, (1)

where Ka
i j is the sequence-dependent stiffness matrix and xa

0
is the equilibrium conformation of the base-pair step state xa,
a = 1, . . . , N , defined as

xa = (
va

1, v
a
2, v

a
3, ua

1, ua
2, ua

3

)T
. (2)

The stiffness matrices and equilibrium conformations can
be derived from DNA-protein cocrystals [27] or from all-
atom MD simulations of DNA oligomers [45]. Also a hybrid
parametrization [46] has been proposed with the shape param-
eters taken from the cocrystals and the stiffnesses from the
simulations. We used this hybrid approach in Refs. [37–41].

022405-2



TRANSLATIONAL NUCLEOSOME POSITIONING: A … PHYSICAL REVIEW E 101, 022405 (2020)

DNA

histone
octamer

binding site

FIG. 1. Nucleosome model. Each rigid plate represents a base
pair, the locations of the constraints (corresponding to bound phos-
phates) are shown by beads, two per binding site. The cylinder
is a rough representation of the protein core but is not simulated
explicitly (except through the binding sites).

In our nucleosome model a 147-bp-long DNA molecule
is forced into a superhelix through a set of 28 constraints
that represent the 14 binding sites to the histone octamer (see
Fig. 1) and which were extracted from the nucleosome crystal
structure 1kx5 [47] without introducing free parameters [38]
(later we will also consider how the results are affected by
using different reference crystal structures). These constraints
correspond to bound phosphates in the DNA backbones and
are represented in our model by a special treatment for
the corresponding base-pair steps. This is necessary because
the rigid base pair model does not contain the phosphates
explicitly. We have shown [38] that the location of a given
phosphate can be predicted with high accuracy from the
positions and orientations of the base pairs connected to it.
Specifically, a given phosphate lies very close to the mid-
plane of the corresponding base-pair step. We therefore model
bound phosphates by imposing fixed midframes for all the
base-pair steps closest to such phosphates, 28 in total (two per
binding site). Whereas their positions are rather insensitive to
the used crystal structure (here 1kx5 [47]), their orientations
are affected by the DNA sequence. To remove this base-pair
sequence-dependent bias, we performed a prerelaxation step
of the structure with a homogeneous DNA sequence where
we allowed for a free rotation of the bound midframes, before
we fixed them in their preferred orientations (see Ref. [38] for
more details).

This model is used here for two applications. One is
to calculate the average elastic energy for a given 147-bp-
long sequence by producing random samples of nucleosome
conformations using the standard Metropolis algorithm. Each
Monte Carlo move consists of a local conformational move
of a randomly picked base pair. Base pairs next to bound
phosphates are not moved individually but as a pair such
that the rotation and translation of one base pair determines
that of the other, keeping the midframe fixed (as detailed in
Ref. [38]). The second application of this nucleosome model
is to build a probabilistic model that allows to determine the
free energy, and therefore the positioning probability along
the genome, to a very good approximation, as detailed further
below.

For this purpose, we perform a Monte Carlo simulation
with moves in configuration as well as sequence space. This
mutation Monte Carlo (MMC) algorithm [38] can be used to
simulate a nucleosome which is in equilibrium in sequence
as well as configuration space. The probability of finding
a certain sequence in a certain configuration along a very
long trajectory of a MMC simulation is proportional to the
Boltzmann weight of this state. Hence, we are able to de-
termine the free-energy difference of two 147-bp sequences
S and S′ by comparing the probabilities of the sequences
irrespective of their configurations:

P(S)

P(S′)
=

∫
x∈�nuc

dxe−βE (x,S)∫
x∈�nuc

dxe−βE (x,S′ ) = e−β[Fnuc(S)−Fnuc(S′ )], (3)

where S and S′ are nucleosome-bound DNA sequences, x are
DNA configurations, �nuc is the set of possible conformations
that leave the bound midframes fixed, β = 1/kBT , E is the en-
ergy from the rigid base-pair model, and Fnuc is the mechanical
free energy of nucleosome-bound DNA.

P(S) cannot be determined from a trajectory of an MMC
simulation for all possible sequences as there are far too many,
namely 4147 ≈ 1088. However, the probability for shorter
stretches, namely all dinucleotides or trinucleotides, at all
positions in the model nucleosome can be determined to high
precision. Following Tompitak et al. [48] these probabilities
can be used to approximate conditional probabilities. For
instance, the probability that a nucleosome bound sequence
features nucleotide Sn at position n, given nucleotides S1 to
Sn−1, can be approximated by

P(Sn|Sn−1 ∧ Sn−2 ∧ ... ∧ S1) ≈ P(Sn|Sn−1 ∧ Sn−2). (4)

This next-nearest-neighbor approximation can then be used
to estimate the probability P(S) for a given sequence S =
{S1, S2, . . . , SN } with N = 147:

P(SN ∧ ... ∧ S1) = P(S2 ∧ S1)
N∏

i=3

P(Si|Si−1 ∧ ...S1)

≈ P(S2 ∧ S1)
N∏

i=3

P(Si|Si−1 ∧ Si−2)

= P(S2 ∧ S1)
N∏

i=3

P(Si ∧ Si−1 ∧ Si−2)

P(Si−1 ∧ Si−2)
. (5)

Note that this contains no information about free-energy
differences in the unbound DNA states (which are purely
entropic), what is usually referred to as linker or free DNA.
Therefore, the free-energy difference in Eq. (3) is only infor-
mative for nucleosome positioning if the system is dominated
by the energetic wrapping costs, so that entropic differences
in the unbound states can be neglected. One might hope that
this is indeed the case, as the substantial DNA bending inside
nucleosomes amounts to large energy costs, and in the past
we also employed this approximation [48]. However, there are
certain aspects of nucleosome positioning where the entropy
of the unbound DNA is important, as we demonstrate in
Secs. III and IV. Given that two sequences A and B compete
for a nucleosome, the probabilities of finding the nucleosome
bound to A and B depends on the free-energy difference
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between the two states of the entire system, not just the
nucleosome-bound sequence:

kBT ln

[
P(Nuc. bound to A)

P(Nuc. bound to B)

]
= Fsys(Nuc. bound to B) − Fsys(Nuc. bound to A)

= [Fnuc(B) + Ffree(A)] − [Fnuc(A) + Ffree(B)]

= [Fnuc(B) − Fnuc(A)] − [Ffree(B) − Ffree(A)]

= �Fnuc − �Ffree, (6)

where Fnuc and Ffree are the sequence-dependent free ener-
gies of nucleosome-bound and unconstrained (free) DNA,
respectively. In other words, a genomic sequence needs to
be favorable in the nucleosome-bound state and unfavorable
in the unbound state to compete for nucleosomes with high
affinity.

In our model, making use of Eq. (5), the free energy of
nucleosome-bound DNA for a sequence S is given by:

Fnuc(S) = −kBT log P(S)

≈ −kBT log P(S2 ∧ S1)
N∏

i=3

P(Si ∧ Si−1 ∧ Si−2)

P(Si−1 ∧ Si−2)
,

(7)

with the probabilities obtained from the MMC simulation.
The sequence-dependent free energy of the free DNA can be
in principle determined with the very same MMC algorithm
we used for parametrizing the free energy of nucleosomal
DNA; however, as shown in Appendix B, it also can be
computed analytically. For a sequence S of length N + 1, the
free energy of the free DNA is

Ffree(S) = kBT

2

N∑
a=1

ln det Ka, (8)

where Ka is the stiffness matrix of the base-pair step starting
at base pair a. Therefore the free energy of free DNA depends
solely on the stiffness of the DNA base steps, and it is purely
entropic in origin. The energy of unconstrained DNA is given
by the equipartition theorem. Hence, it solely depends on
the number of degrees of freedom, i.e., the number of base
pairs, and the temperature, but not the DNA sequence. In
Appendix B we also derive the probabilities of individual
base-pair steps along unconstrained DNA. Depending on the
parametrization, these probabilities can display strong se-
quence dependencies and the entropy of free DNA might thus
represent an important contribution to nucleosome position-
ing. This will be discussed in Sec. IV.

Our model is very similar to those used by Segal and
coworkers [3,6,49], except that in their case the sequence-
dependent probabilities entering in the expression of the free
energy were estimated directly from experiments, whereas
in our case they are estimated either analytically (for free
DNA) or from the MMC simulations (for nucleosomal DNA)
based on the rigid base-pair model. The advantage of our
approach is that it enables us to clearly discriminate the
energetic versus the entropic contributions to the nucleosome
positioning along the genome, a main focus of this article.
A second important aim is to investigate how the model

predictions, and the agreement with experiments, depend on
the DNA parametrization. As mentioned earlier, in the rigid
base-pair model the stiffness matrices K may be determined
either from a database of DNA-protein cocrystals [27] or from
all-atom MD simulations [45]. A critical issue with the choice
of DNA parametrization is that the rigid base-pair model is
only a harmonic approximation to the true DNA Hamiltonian.
In principle we should choose the parameters that provide the
best agreement with experiments, but it is not clear whether a
single set of parameters can represent well both unconstrained
and nucleosomal DNA at the same time. In fact, one could
expect that the MD parameters should be more appropriate
for modeling unconstrained DNA, since it corresponds to
the condition of the MD simulations from which parameters
are derived, whereas the crystal parameters should be more
appropriate for nucleosomal DNA, since these parameters
were also obtained from DNA-protein complexes. Given these
considerations, we decided to evaluate the predictions and the
agreement with experimental in vitro nucleosome occupancies
for four main different models:

(i) The crystal model, where both the equilibrium and
stiffness parameters are derived from DNA-protein cocrystals
[27].

(ii) The hybrid model, where the equilibrium base-pair
step parameters are obtained from DNA-protein cocrystals,
whereas the stiffness parameters come from MD simulations.
This model was used many times in the past [37–41,46], and
it behaves very similarly to a pure MD parametrization (which
is not discussed here).

(iii) The multiharmonic model, where the nucleosomal
DNA is modeled using the crystal parameters (both equi-
librium and stiffness), whereas the unconstrained DNA is
modeled using the MD parameters (here only stiffness enters
in the free energy). This model is motivated by the realization
that DNA is highly nonlinear and that it may be preferable to
have two distinct harmonic approximations for nucleosomal
and free DNA.

(iv) The ET model introduced in Ref. [12], where ET
denotes Eslami-Mossallam-Tompitak, because it was the
first to combine the MMC simulation approach by Eslami-
Mossallam [38] with the approximation for the probability
by Tompitak [12] [Eq. (5)]. This model uses the same DNA
parameters as in the crystal model. However, the ET model
relied on the assumption that the free energy of nucleo-
some formation is dominated by the bending energy penalty,
whereas in the other three models presented here we also take
into account the entropy of the free DNA [Eq. (6)].

III. ORIGIN OF GC CONTENT DEPENDENCE
OF THE ET MODEL

The ET model has been used to predict the average nu-
cleosome occupancy (the probability that a given base pair
is covered by a nucleosome) around transcription start sites
(TSS) in various organisms [12]. This theoretical “average
nucleosome occupancy” is determined from the genomewide
average energy landscape around TSSs, whereas in experi-
mental studies the average logarithm of nucleosome occu-
pancy is computed. After averaging the energy landscapes
over several thousand sequences, only sequence features
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remain that generally inhibit or favor nucleosome positions,
independent of the rotational phase. Tompitak et al. [12]
already noted that the average GC content curves look very
similar to their predicted nucleosome occupancy, but only
when using a purely crystallographic parametrization [27].
However, the physics underlying the GC content dependence
of the model was not investigated and it was not explained
why the crystallographic stiffnesses seem more reliable in
this particular context, whereas in all other studies of our
nucleosome model the stiffness matrices were derived from
MD simulations [45]. In the following, we will thoroughly
study the predictions of the ET model and the sequence
dependence of nucleosome occupancy in yeast in order to
answer these questions.

The ET model [12] is based on the assumption that en-
ergy dominates over entropy in determining the sequence
dependence of nucleosome affinity, because DNA is strongly
deformed inside nucleosomes. In order to test this assump-
tion, Tompitak et al. compared the free-energy differences
between various sequences along chromosome I from yeast
to the corresponding average energy differences [48]. The
free energies were derived from the MMC-based Markov
model, whereas the average energies were determined with
Monte Carlo simulations of the coarse-grained nucleosome
model in configuration space only. Both simulations were
performed at T = 50 K and used a hybrid parametrization
[46], combining the equilibrium configurations from crystal
structures with the stiffness matrices from MD simulations.
In a different paper the AT-rich dinucleotide frequencies in
the nucleosome were determined at different temperatures,
which showed hardly any temperature dependence [40]. The
confidence that energy is also dominating in vitro affinities
comes from the original MMC study, where the average ener-
gies of tetramers were compared to experimental nucleosome
affinities for a few sequences [38]. In all three cases, however,
the hybrid parametrization was used, which does not yield the
GC content dependence observed in vitro. Hence, it has never
been tested whether the GC content dependence observed in
Ref. [12] is in agreement with the assumptions of the ET
model.

Given that the stiffnesses Ka in both parametrizations
are of the same order of magnitude, one might expect that
the dominance of energy is independent of the choice of
parameters. However, a closer look at the diagonal entries
of Ka reveals that the crystallographic parameters span a
broader range than the MD parameters, especially for roll and
tilt, which are particularly relevant for DNA bending inside
nucleosomes [see Figs. 2(b) and 2(c)]. On average, GC-rich
dinucleotides are less stiff than AT-rich dinucleotides which
can be seen particularly well at the determinant of the stiffness
matrix, Fig. 2(a). Interestingly, this trend is not found for roll,
which is the dominant mode of bending in the nucleosome.
Hence, it is not clear, whether the low total stiffness of
GC dinucleotides actually makes them energetically more
favorable.

To answer this question, we computed the energy and
the free energy of 144 000 random sequences. The energy
is calculated from the coarse-grained nucleosome model [38]
(shown in Fig. 1), whereas the free energy is determined from
our ET model, see Eq. (7). All simulations in this section are

performed at 100 K, the same temperature we used in some
of our earlier simulations, e.g., the ones in Ref. [38]. Com-
pared to physiological temperatures, this underestimates the
entropic contribution to the free energy. In order to properly
test the GC content dependence, the number of GCs in each
sequence was fixed such that there are 1000 sequences for
each possible GC content between 2

147 and 145
147 . In Figs. 2(d)

and 2(g) the free energies of all these sequences are plotted vs.
the average energy. Free as well as average energies have been
shifted such that both energies average to zero for sequences
with a GC content of 50%. Among sequences with similar
GC content, differences in free energy are largely due to
differences in energy, independent of parametrization [see
Fig. 2(d) and 2(g)]. When using the hybrid parametrization,
this dominance of energy is also found for sequences with
very different GC content, Fig. 2(g). When using the crys-
tallographic stiffnesses, however, entropy becomes relevant
[Fig. 2(d)].

In fact, it can now be seen clearly that the GC content
dependence observed in Ref. [12] (which uses crystallo-
graphic parameters) is mainly an entropic effect. The low
total stiffness does not make GC-rich sequences energetically
favorable, but it allows them to assume a larger number of
configurations than AT-rich sequences [Fig. 2(f)]. For large
differences in GC content, the entropic contribution to the
free-energy difference is four times larger than the maximal
energy difference among the 144 000 sequences. This is par-
ticularly remarkable, because all simulations were performed
at a low temperature of 100 K. On the other hand, hardly
any entropic contribution to the GC content dependence is
observed when using MD stiffnesses, whereas the energetic
contribution makes GC-rich sequences unfavorable [Fig. 2(i)].
Interestingly, the entropy of the ET model is largely indepen-
dent of temperature, see Figs. 2(e) and 2(h). Furthermore, it
seems largely independent of the overall DNA configuration
as the entropy of unconstrained DNA follows very similar
slopes, see Figs. 2(f) and 2(i).

In Appendix A we present analytical results for simplified
versions of the nucleosome model to understand better the
competition between energy and entropy in such systems.
It also demonstrates that the independence of entropy with
respect to temperature results from the harmonic potential.
The weak dependence of entropy on the overall DNA con-
figuration will be discussed in the next section.

IV. GC CONTENT DEPENDENCE OF CONSISTENT
MECHANICAL MODELS

The results in the previous section demonstrate that, espe-
cially for the crystallographic DNA parametrization, the en-
tropy of nucleosomal DNA depends on the sequence, violat-
ing the assumption of the dominance of energy underlying the
ET model [12]. Therefore, only the complete crystal, hybrid,
and multiharmonic models can be considered consistent me-
chanical models of nucleosome positioning. In the following,
we study the sequence dependencies of these models.

As an illustration we simulate the coarse-grained nucleo-
some model, Fig. 1, at 300 K but with extra free DNA attached
to the nucleosomal DNA at both ends, namely 50 bp each.
The resulting nucleotide distributions are shown for the hybrid
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FIG. 2. GC content dependence of energy and entropy: (a) Determinant of stiffness matrix Ka from rigid base-pair model, derived from
molecular dynamics simulations (MD) and protein-DNA crystal structures (crystal) for all distinct base-pair steps. In the crystallographic
parametrization GC-rich base pairs (yellow) tend to be less stiff than AT-rich steps (blue). (b) Roll-roll and (c) tilt-tilt stiffnesses vary more
strongly in the crystallographic parametrization. [(d)–(f)] Comparison of entropy and energy in nucleosomal [(d)–(f)] and unbound (f) DNA
using parameters from protein-DNA cocrystals [27] demonstrates an entropy-dominated GC content dependence. Specifically, (d) average
energy E from Monte Carlo simulations vs. free energy F from ET model for 144 000 random sequences with equally distributed GC content.
Energies and free energies are given relative to the average values at 50% GC content. All simulations were performed at 100 K. The x = y
line is depicted in red. (e) Entropy of the same sequences as in (d) using the free energy from MMC simulations at 100 K and 300 K and the
energy from Monte Carlo simulations at 100 K. Values are given relative to the average entropy of all sequences. The x = y is drawn in red
illustrating the temperature independence of entropy. (f) Average entropy S of nucleosomal as well as free DNA and energy E of nucleosomal
DNA for sequences with identical GC content from (d) and (e), relative to average over all sequences. [(g)–(i)] Same as in (d)–(f) but using
base-pair step shape parameters from protein-DNA crystal structures and stiffnesses from MD simulations (hybrid parametrization [46]).

parametrization in Fig. 3(a) and for the crystallographic
parametrization in Fig. 3(b). Specifically is depicted the GC
content (and the corresponding AT content) as a function
of the base-pair position. For both cases we find inside the
nucleosome characteristic 10-bp oscillations, whereas the GC

content in the free DNA is constant. The oscillations are well
known from experiments [3,5,6] and computer simulations
[32,38,40]. They reflect the fact that sequences rich in AT
content where the minor groove faces inward and in GC con-
tent where it faces outward lead on average to an intrinsically
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FIG. 3. MMC simulation of the nucleosomal model in Fig. 1

but with extra 50 bp of free DNA attached at each end. (a) Hybrid
parametrization and (b) crystallographic parametrization. Both sim-
ulations were performed at 300 K.

bent DNA double helix with that preferred rotational
setting [42].

Note the dramatic difference in GC content (for both free
and wrapped DNA) between the two parameter sets. Whereas
the hybrid parametrization yields only a small preference for
GC-rich DNA, Fig. 3(a), the crystallographic parameters show
a strong preference, Fig. 3(b). Moreover, the GC content of
wrapped DNA for positions in between binding sites and of
free DNA is almost the same. Only close to the binding sites
do the probabilities drop. This reflects the fact that in our
nucleosome model it is entropically unfavorable for the softer
GC-rich base pairs to be close to the fixed midplanes that
represent the binding sites, see Fig. 1.

In the following we will not rely on the MMC simulations
for the free DNA since it it possible to compute the base-pair
step probabilities analytically, as shown in Appendix B. The
resulting dinucleotide probabilities are plotted in Figs. 4(c)

and 4(f). In this plot we depict the probabilities of all 10
independent dinucleotides, colored according to their GC
content. Adding up the corresponding probabilities leads back
to the values found in the MMC simulations for the free DNA
stretches, see Fig. 3.

For comparing sequence preferences of free and nucleo-
somal DNA it is useful to compute the average dinucleotide
probabilities of nucleosomal DNA in 10-bp intervals to re-
move the strong 10-bp undulations inside nucleosomal DNA
(seen, e.g., in Fig. 3). Figures 4(a) and 4(d) show these
probabilities for two different types of parametrization, both at
100 K. The corresponding probabilities at 300 K are depicted
in Figs. 4(b) and 4(e). As can be seen for both parametriza-
tions, with increasing temperature the dinucleotide proba-
bilities in nucleosomal DNA converge to the values found
in free DNA [e.g., for the crystal case compare Figs. 4(a)
to 4(c)]. This clearly suggests that the average dinucleotide
probabilities are in general dominated by entropy and that the
sequence dependence of entropy is configuration independent.

After having recognized the potential importance of the
entropy in determining the sequence preferences of nucle-
osomes, we now come back to our original question: Can
simple theoretical models predict the observed nucleosome
preference for sequences with high GC content? In Fig. 5 we
show the relationship between GC content and the free energy
of nucleosome assembly (�Fnuc − �Ffree) for the 144 000
random sequences used in Fig. 2. In Figs. 5(a), 5(b) and 5(c),
we respectively compare the predictions from the complete
crystal, hybrid, and multiharmonic models. We focus first
on the blue curves, which correspond to the results obtained
using the 1kx5 crystal structure as reference (as done in all
past models). As can be seen, both pure crystallographic and
hybrid DNA parameters predict an increase in free energy
with increasing GC content, in disagreement with the ex-
perimental observations. However, this similar behavior has
two distinct origins. In the crystallographic case, the energy
of nucleosomal DNA shows little GC dependence, and the
nucleosome preference for sequences with low GC content is
due to the larger loss of entropy on the free DNA [Fig. 2(f)].
On the other hand, in the hybrid case, entropy does not display
a large GC dependence, but the preference for sequences with
low GC content is still present due to their lower energy within
the nucleosome [Fig. 2(i)].

The only theoretical model that is able to correctly capture
the high GC-content preference is the multiharmonic model.
Here the unbound DNA is modeled using the hybrid (or,
equivalently, MD) parameters, so that the entropy of free DNA
shows little sequence dependence [Fig. 2(i)], whereas nucleo-
somal DNA is modeled using the crystallographic parameters,
so that GC-rich sequences are favored due to their higher
entropy [Fig. 2(f)]. This result suggests that indeed it may
be preferable to model unconstrained and nucleosomal DNA
using two distinct sets of DNA parameters, possibly reflecting
the existence of nonlinearities that cannot be captured by a
single harmonic approximation. In this sense the ET model
[12], which ignores the entropy of the free DNA and also
correctly predicts the GC preference, may be considered as
a consistent approximation to the multiharmonic model.

However, our predictions may have been also influenced
by some specific aspects of our models. In particular, one
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FIG. 4. Dinucleotide probabilities in nucleosomal and free DNA converge at high temperatures. The nucleosomal probabilities were
determined with the MMC algorithm applied to the prerelaxed nucleosome structure of Ref. [38]. The simulations were performed at 100 K
and 300 K using the crystal parameters or the hybrid parametrization. Specifically, (a) T = 100 K, crystal parametrization; (b) T = 300 K,
crystal parametrization; (d) T = 100 K, hybrid parametrization; and (e) T = 300 K, hybrid parametrization. To facilitate the comparison with
unconstrained DNA shown in (c) for crystal parametrization and in (f) for hybrid parametrization, the average probabilities in (a), (b), (d), and
(e) were computed in 10-bp intervals. The dinucleotide probabilities in unconstrained DNA were computed using Eq. (B4).

possibility might be that the specific DNA conformation
used in our nucleosome model [38] is unrealistic, as it is
based on a single nucleosome crystal structure using a single

DNA sequence [47]. We attempted to make this configuration
less sequence specific by implementing a prerelaxation step
before fixing the midplanes that mimic the binding sites [38].
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FIG. 5. GC content dependence of relative free energy [Eq. (6)] for different nucleosome structures at 300 K for (a) crystallographic,
(b) hybrid, and (c) multiharmonic parameters. The relaxed 1kx5 structure is the structure used in Refs. [12,38,40], which is based on the
1kx5 crystal structure and was adapted using the prerelaxation procedure described in Ref. [38]. The other structures are the unrelaxed rigid
base-pair fits of nucleosome crystal structures from the protein data base (PDB). The PDB IDs are given in the legend.
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Nevertheless, this procedure might have led to constraints
on our nucleosomal DNA that happen to be energetically
unfavorable for GC-rich sequences. Therefore, we performed
MMC simulations of four different structures, derived from
nucleosome crystal structures without further prerelaxation
(PDB: 1kx5 [47], 1kx3 [47], 3ut9 [50], and 3mvd [51]).
Subsequently, the resulting di- and trinucleotide probabilities
were used to compute the free energy of nucleosome binding
for the same 144,000 sequences used in Fig. 2. However, our
results were largely unchanged from those obtained with the
original 1kx5 reference. For most structures, the crystal and
hybrid models predict that GC-rich sequences are unfavorable
for nucleosome binding (see Fig. 5). Only for one nucleo-
some crystal structures (PDB: 3ut9) a significant energetic
contribution balances the entropic penalty of high GC content.
On the other hand, the multiharmonic model consistently
predicts higher nucleosome affinity for sequences with high
GC content.

V. THE IN VITRO GC PREFERENCE IS INDEPENDENT OF
POLY-dA:dT SEQUENCES BUT LIKELY INFLUENCED BY

NONEQUILIBRIUM EFFECTS

In this section, we address the question whether transla-
tional nucleosome positioning in vitro is affected by phenom-
ena our nucleosome model cannot capture, namely nonequi-
librium effects and the peculiar properties of poly-dA:dT
tracts. To answer this question, we take a closer look at the
genome of baker’s yeast (Saccharomyces cerevisiae), relating
the nucleosome map produced by Kaplan et al. [6] to GC
content and the presence of poly-dA:dT sequences. We are
aware of the fact that this is a single study using micrococcal
nuclease. While similar results have been obtained in a very
similar independent study [52], the main problem with MNase
is its significant sequence specificity independent from the
presence of nucleosomes [53]. Notably, the MNase preference
for digesting exposed AT-rich sequences [54] may partially
account for the observed enrichment in GC-content within
nucleosomal DNA [9,55]. However, we note that similar
results have been also obtained with a different enzyme [56].
In addition, although the chemical in vivo nucleosome map
obtained by Widom and coworkers does not highlight an en-
richment in GC content in nucleosomal vs. linker DNA [55], it
does show a significant correlation between the probabilities
of the individual stable nucleosomes and the GC content of
the underlying 147-bp nucleosomal DNA (ρ = 0.20, p ≈ 0);
such a correlation is still present after excluding nucleosomes
containing poly-dA:dT tracts of four or more base pairs (ρ =
0.045, p = 0.0004). The consistency of these findings makes
us confident that the considered MNase study can serve as a
representative example of in vitro nucleosome maps. Further-
more, the GC content dependence of nucleosome occupancy
(in vivo) has been observed in cells as different as human
sperm [13] and archaea [57,58].

First we consider the possibility that the preference of
nucleosomes for GC-rich DNA might actually reflect to a
large extent their dislike for poly-dA:dT sequences (i.e.,
AAAA... or TTTT...). It is known that poly-dA:dT tracts have
unusual properties, making them resistant to be incorporated
into nucleosomes [59]. This is a cooperative sequence effect

that cannot be captured by the rigid base-pair model [27]
as in this model the stiffness and geometry of any given
base-pair step is independent of the rest of the sequence.
It is worthwhile to mention that a less coarse-grained DNA
model, cgDNA, a rigid base model, predicts that poly-dA:dT
sequences are exceptionally stiff [60]. This suggests that our
model cannot capture certain aspects that are inherent to
real DNA mechanics. This failure might be important as it
is well known that poly-dA:dT tracts are more abundant in
eukaryotic genomes than expected by chance, in particular
around TSSs [61], see, e.g., the peak in the frequency of
poly-dA:dT sequences in yeast in Fig. 6(i). Hence the question
arises whether the nucleosome depletion around TSSs and
other GC-poor regions in the genome is a result of poly-dA:dT
tracts instead of GC content.

To address this question, the entire genome was scanned
for poly-dA:dT tracts (defined here as a series of only A
or only T nucleotides longer than 4 bp). Every given base
pair which was closer than 147 bp to at least one A or T
of a poly-dA:dT sequence longer than 4 bp was marked as
possibly poly-dA:dT affected. Subsequently, the GC content
dependence of the nucleosome occupancy was analyzed, us-
ing either the entire genome or only the positions which
are not affected by poly-dA:dT tracts. This was done by
binning 2 × 146 + 1 bp DNA stretches according to their GC
content with each bin corresponding to a 2% GC content
interval. For these stretches the average in vitro and in silico
occupancy was computed. In Figs. 6(a) and 6(b) the statistics
of the nucleosome occupancy for each GC content bin are
plotted. The blue solid curves corresponds to the entire yeast
genome, whereas for the red solid curve only poly-dA:dT-free
intervals were taken into account. For each bin and each
subset of the genome, three values are plotted: the average,
the 10th percentile, and the 90th percentile (dashed lines). The
in vitro data, Fig. 6(a), clearly indicate that the observed GC
content dependence is independent of poly-dA:dT sequences.
Furthermore, this is not an effect of some other special se-
quences, as the slopes of average and percentile values are
nearly identical. The same is also true for the multiharmonic
model, Fig. 6(b). However, the GC content dependence turns
out to be very different from the in vitro data. While the
in vitro occupancy saturates for high GC content, the slope
of the in silico occupancy even increases slightly for high GC
content.

A possible explanation for this effect may be that the
nucleosomes are not able to try out all possible sequences
on the genome during one experiment as nucleosome repo-
sitioning along DNA, mentioned in the Introduction, is a
very slow process. Hence, a given interval on the genome
only competes with nearby intervals for nucleosomes, because
nucleosomes will not move far along the genome after they
are bound to DNA. In other words, the system is only locally
at thermodynamic equilibrium. To test this hypothesis, we
assume that the nucleosomes were uniformly distributed at
the beginning of the experiment. As nucleosome exchange
over long distances is negligible, this initial distribution fixes
the nucleosome distribution on large scales. We implement
this by normalizing the probability in 1 kbp intervals. In each
interval the number of nucleosomes is assumed to be of order
one, such that excluded volume effects are negligible. The
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FIG. 6. The interplay of poly-dA:dT sequences and GC content in in vitro and in silico nucleosome positioning. In vitro data are taken from
Kaplan et al. [6]. The in silico data correspond to the predictions of the multiharmonic model. (a) Average (solid line), 10th percentile, and 90th
percentile (dashed lines) of in vitro nucleosome occupancy in yeast as a function of GC content. For the blue curves the statistics of the entire S.
cerevisiae genome is taken into account, whereas for the red curves positions that are closer than 147 bp to a poly-dA:dT sequence (>4bp) are
excluded. (b) Same as (a) but using the prediction of the multiharmonic model. (c) Same as (b) but after normalizing the predicted nucleosome
binding probabilities in 1 kbp intervals. (d) Same as in (c), but after binning the sequences according to the in vitro occupancy instead of GC
content. The x = y line is indicated by a dashed yellow line. Plots (e), (f), (h), and (i) present averages over all TSSs in S. cerevisiae, whereas
plots (g) and (j) show averages only for TSSs which do not contain a poly-dA:dT tract in the 200-bp interval indicated by the red dashed lines.
(e) Average logarithm of nucleosome occupancy in vitro and in silico (at 300 K). [(f) and (g)] Logarithm of average occupancy in vitro and
in silico (at 300 K) with the occupancy for each gene normalized to 1 in the 2000-bp interval (except for the curve labeled “in vitro”), see text
for details. [(h) and (j)] Average GC content in 147-bp intervals. (i) Fraction of 147-bp intervals that contain at least one poly-dA:dT sequence.

resulting prediction of the multiharmonic model, Fig. 6(c),
yields indeed saturation similar to the in vitro data, Fig. 6(a).
Note that the different behavior at very low and very high GC
content does not have to be meaningful, as they are the result
of only a few sequences.

Figure 6(d) demonstrates that the combination of local
normalization and multiharmonic parameters enables us to
predict the average nucleosome occupancy over several orders
of magnitudes. At the same time, we also note a large span
in in silico occupancy for sequences with similar in vitro
occupancy [see the curves for the 90th and 10th percentiles
in Fig. 6(d)]. Hence, we cannot exclude that there are further
aspects of translational nucleosome positioning which our
model cannot resolve. However, also the limited number
of sequencing reads as well as the nucleosome-independent
sequence specificity of MNase certainly play a role here.

A frequently studied aspect of nucleosome maps is the
average occupancy around TSSs, which sheds further light on
the GC dependence of nucleosome occupancy. As observed
in several studies, the TSSs of S. cerevisiae are nucleosome
depleted on the genomewide average, in vitro [Figs. 6(e) and
6(f)] as well as in vivo (see, e.g., Ref. [6]). Also here we
can ask the question whether this is related to a drop in GC
content, Fig. 6(h), or a peak in the fraction of poly-dA:dT
sequences, Fig. 6(i), or both. We therefore looked at the subset
of TSSs which do not contain poly-dA:dT sequences longer
than 4 bp in a 200-bp interval close to the TSS, see Figs. 6(g)
and 6(j) (the interval is demarcated by red lines). Because
such sequences are so abundant around TSSs, only a few
hundred TSSs remain, leading to poor statistics. Furthermore,
this procedure selects for sequences with relatively high GC
content around the TSS [Fig. 6(j)]. In doing so, we lose the
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nucleosome depletion region usually observed around TSSs.
Nucleosome occupancy [Fig. 6(g)] and GC content [Fig. 6(j)],
both averaged over this subset of TSSs, do not show a clear
signal. Hence, a separate analysis of GC content and poly-
dA:dT dependence of nucleosome occupancy—as done for
the whole genome above—is not possible for TSSs.

However, we can test the predictions of the multiharmonic
model for the TSSs of S. cerevisiae. When computing the
average logarithm of the predicted nucleosome occupancy
around TSSs across all genes [Fig. 6(e)], we observe that
our model correctly predicts a nucleosome-depleted region.
However, it overestimates the effect, as we observed before
for the genomewide GC content dependence [Fig. 6(b)].
We also show a slightly modified version of this curve
where the nucleosome free energy is given by the minimum
free energy of all position up to 5 bp away. This means we
assume that nucleosomes can slide over a short distance to
always be rotationally optimally positioned. This modification
has negligible effects on the occupancy curve.

Next, we once again implemented the idea that nucleo-
somes are only locally in thermal equilibrium. To do so, we
normalize the occupancies for each TSS in the corresponding
2000-bp interval to 1. We then average across genes and
finally take the logarithm. Remarkably, the normalization step
has hardly any effect for the in vitro data: The curve where we
did not normalize the occupancies is nearly identical to the
one where we employed the normalization, see Fig. 6(f). This
is a strong indication that the reconstituted chromatin sample
is indeed not equilibrated. Applying the same approach to
the multiharmonic model gives an occupancy curve that is
much closer to the in vitro data than what we found in
Fig. 6(e). Accounting for short range sliding up to 5 bp to the
lowest free-energy state leads to a smoothening of the curve
[Fig. 6(f)].

Remarkably, our model predicts three maxima to the right
of the TSS, the second being 250 bp apart from the first
maximum and the third 550 bp. These maxima cannot be seen
in the in vitro curve. Also they are hardly visible when using
the previous averaging procedure, Fig. 6(e). We speculate that
these might be real mechanical cues on the DNA molecules
that are present downstream of a substantial fraction of the
TSSs. However, it should also be noted that actual in vivo
nucleosome densities are very high so that the average spacing
between nucleosomes is much smaller than suggested by these
peaks. In vivo occupancies show well-defined peaks with
a regular spacing of about 160 bp, see, e.g., Fig. 4(a) in
Ref. [55]. These peaks reflect the statistical ordering close to
a boundary (here caused by the dip in GC content at TSSs),
an effect already proposed in Ref. [62]. In fact, short-enough
genes show a crystal-like configuration between their TSSs
and transcription termination sites, which also act as nucleo-
some barriers [63]. The interesting question remains whether a
subset of genes shows deviations from this statistical ordering
as a result of the mechanical cues found in Fig. 6(f). We plan
to address this question in a future study.

VI. CONCLUSIONS

In this paper we asked the question how the sequence-
dependent elasticity and geometry of the DNA double helix

causes the translational positioning of nucleosomes. We found
that when modeling DNA with the rigid base-pair model,
a model with a local harmonic elastic energy, translational
positioning is a rather subtle effect that in our nucleosome
model is predominantly caused by entropy. The overall softer
GC-rich steps of the crystallographic parameter set are en-
tropically preferred for nucleosomal DNA which would be in
accordance with experimental observations. However, a full
model needs also to account for the entropy change when free
DNA is wrapped into nucleosomes which is entropically more
costly for the softer GC-rich DNA. As a result, if the model
employs the same set of parameters for both nucleosomal and
free DNA, then it predicts the wrong GC dependence. We
checked that this failure of the model is not the result of the
specific nucleosome geometry assumed in our model or of the
peculiarities of poly-dA:dT tracts.

We introduce a multiharmonic model which uses differ-
ent parametrizations for free and complexed DNA, namely
parameters that have been extracted from these two DNA
“states.” Specifically, free DNA is parametrized by MD sim-
ulations of DNA oligomers (which shows a weak GC depen-
dence) and wrapped DNA by the crystal parameters extracted
from protein-DNA crystals. Using in addition the fact that
genomic nucleosome maps are typically only locally equili-
brated [see Figs. 6(a) and 6(f) for baker’s yeast] one finds a
good quantitative agreement between the model and the data
[see Figs. 6(d) and 6(f)], with a nucleosome preference for
high GC content which, however, saturates at large values.

This study therefore suggests that the rigid base-pair model
can indeed be used to predict translational nucleosome po-
sitioning (and not only rotational positioning [38], which
reflects mainly the elastic energy cost due to DNA shape
[42]). However, some caution is necessary as the entropy of
free DNA needs to be taken into account which, in the most
straightforward implementation, inverts the GC dependence.
The fact that we need to use a mixed parametrization to
arrive at the proper GC dependence points to some short-
comings of the rigid base-pair model. One problem might be
that the model is strictly local and therefore cannot describe
the stiffening of poly-dA:dT tracts. However, our analysis
suggested that this is not the mechanism behind the experi-
mental GC dependence. Another problem might be that the
model is harmonic, i.e., one assumes that the elastic energy
of each base-pair step varies quadratically with the devia-
tion from the preferred geometry. Furthermore, the different
electrostatic environment in the protein-bound state due to
counter-ion release and the low dielectric protein core might
simply yield a very different but still harmonic potential than
the one obtained from MD simulations of bare DNA. This
should be investigated in the future. The fact that we need
to use a different parametrization for the strongly deformed
complexed DNA suggests that this assumption breaks down
at least partly, namely when looking at entropy, whereas
other sequence-dependent effects, including rotational po-
sitioning [38], asymmetric nucleosome breathing [41], and
force-induced unwrapping [37], are rather robustly described
by the model in Fig. 1. Finally, since the GC dependence of
the MD parametrization used for the free DNA is weak, a
simplified approach that does not account for the free DNA
at all, as done in Ref. [12], might be sufficient.
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APPENDIX A: ON THE INTERPLAY OF ENTROPY AND
ENERGY IN SIMPLIFIED ONE-DIMENSIONAL

NUCLEOSOME TOY MODELS

We study here various versions of systems consisting of
one-dimensional chains of masses connected by harmonic
springs. These Rouse model-like systems can be solved an-
alytically and allow us to understand better the effect of
the spring stiffnesses on energy and entropy. The surprising
dominance of entropy in determining the GC dependence of
our nucleosome model can then be better interpreted. First we
look just at a series of springs without any constraints (“free
DNA”), then we look at systems where the ends of the system
are fixed (either rigidly or via extra springs), and, finally, we
mimic our nucleosome model rather closely by introducing
fixed midplanes.

1. Without constraints

The “free DNA” version of the one-dimensional chain is
shown in Fig. 7. Its Hamiltonian is given by:

H1({qi}, {pi}) =
N∑

i=1

p2
i

2m
+

N∑
i=2

k

2
(qi − qi−1 − l )2, (A1)

where qi is the position, pi is the momentum of particle i, and
k denotes the stiffness of the Hookean springs of length l and
N the number of particles. The partition function is then given
by

Z1(T,V, N ) =
∫ N∏

i=1

dqid pi exp[−βH1({q j}, {p j}], (A2)

where V is the (one-dimensional) volume to which the chain
is constrained. This integral is a product of simple Gaussian
integrals leading to

Z1(T,V, N ) =
(

2πm

β

) N
2
(

2π

βk

) N−1
2

V. (A3)

From this, we can calculate the free energy:

F1(T,V, N, k) = − lnZ1(T,V, N )

β

= N − 1

2β
ln k + F1(T,V, N, k = 1). (A4)

FIG. 7. One-dimensional chain without constraints.

FIG. 8. One-dimensional chain with its ends rigidly constrained.

The energy is simply given by the equipartition theorem:

E1 = 2N − 1

2
kBT . (A5)

As expected, the k dependence of the free energy of this sys-
tem is caused only by the temperature-independent entropy:

S1 = E1 − F1

T
= −kB

N − 1

2
ln k + S1(k = 1). (A6)

2. With rigid constraints

Next, we study the impact of constraints (“bound DNA”).
Here we fix the ends of the chain, see Fig. 8, and compute
the partition function of the remaining chain with N2 = N − 2
particles. We redefine the positions of particles as qi → qi −
il . The Hamiltonian is then given by

H2({qi}, {pi}) =
N2∑

i=1

p2
i

2m
+ k

2

N2∑
i=2

(qi − qi−1)2

+ k

2

[
q2

1 + (L − (N2 + 1)l − qN2 )2
]
. (A7)

After a longer calculations we arrive at the exact partition
function:

Z2(T,V, N2) =
(

2πm

β

) N2
2
(

2π

βk

) N2
2 1√

N2 + 1

× exp

{
−βk[L − (N2 + 1)l]2

2(N2 + 1)

}
. (A8)

This yields an additional term in the k dependence of the
free energy compared to the unbound case discussed in the
previous section [see Eq. (A4)]:

F2(k) = N2

2β
ln k + [L − (N2 + 1)l]2

2(N2 + 1)
(k − 1) + F2(1). (A9)

This term corresponds to an energetic contribution:

E2(k) = −∂βZ2

Z2
= N2kBT + [L − (N2 + 1)l]2k

2(N2 + 1)
. (A10)

Note that the k dependence of the energy vanishes if we
choose L to be equal to the chain’s equilibrium length (N2 +
1)l . The k dependence of entropy behaves as if we had
removed one particle from the free DNA:

S2(k) = E2(k) − F2(k)

T
= −kB

N2

2
ln k + S2(1)

= −kB
N − 2

2
ln k + S2(1). (A11)

022405-12



TRANSLATIONAL NUCLEOSOME POSITIONING: A … PHYSICAL REVIEW E 101, 022405 (2020)

FIG. 9. One-dimensional chain with flexible constraints.

With the results from this and the previous section, we
can now determine the k dependence of the likelihood of
“binding”:

�F = F2 − F1 = − 1

2β
ln k + [L − (N − 1)l]2

2(N − 1)
(k − 1)

+ F2(1) − F1(1). (A12)

For L �= (N − 1)l , i.e., when the imposed end-to-end distance
causes the compression or stretching of the chain of springs,
there are two regimes of k dependence: For large k, energy
dominates yielding a positive k dependence of �F and thus
stiffer springs are less likely to bind. For small k, entropy
dominates (diverging as ln k), making softer chains less likely
to bind. The boundary between these two regimes depends
on temperature and the degree of compression or stretching.
From ∂�F/∂k = 0 follows:

k0 = N − 1

β[L − (N − 1)l]2
. (A13)

For k = k0 there is a global minimum of �F . The sequences
which are most likely to bind are those with a k close to k0.
If k0 is smaller than the typical stiffness of an ensemble of
sequences, then the ensemble will show a positive correlation
of free energy and stiffness (energy dominated case). If k0 is
larger, then one finds an anticorrelation (entropy dominated
case).

The latter case corresponds to our nucleosome model
which leads to the problematic prediction that nucleosomes
tend to avoid the softer GC-rich DNA. This suggests that
a successful nucleosome model should impose stronger de-
formations on the complexed DNA. However, using variants
of our model, based on several crystal structures and with
the prerelaxation step removed, did not resolve the issue, see
Fig. 5.

3. With flexible constraints

There might be a conceptual problem when comparing
the free energies of the free and the bound state, using rigid
constraints for the latter. As we fix the first and the last particle
of the chain, the entropic penalty of binding is infinite. This
makes the validity of Eq. (A12) questionable. We overcome
this here by binding the ends to springs with stiffness k′
and zero equilibrium length, Fig. 9. This ensures that the
difference in free energy of the bound and the unbound state
will not be infinite and an analysis of the k dependence is
valid. In the end, we can compute the limit for k′ → ∞. As
we show here we recover and, thus, validate Eq. (A12). Let
us again start from the Hamiltonian, now with the positions

redefined as qi → qi − il + l:

H3({qi}, {pi}) =
N∑

i=1

p2
i

2m
+ k

2

N∑
i=2

(qi − qi−1)2

+ k′

2

{
q2

1 + [L − (N − 1)l − qN ]2
}
. (A14)

The partition function of this system follows from a longer
calculation (similar to the previous section) to be

Z3 =
(

2πm

β

) N
2
(

2π

βk

) N
2

×
√

k2

k′[2k + (N − 1)k′]
exp

{
−βk′k[L− (N − 1)l]2

2[2k + (N− 1)k′]

}
,

(A15)
from which we find the free energy

F3(k) = N − 2

2β
ln k + k′[L − (N − 1)l]2

2[2k + (N − 1)k′]
(k − 1)

+ ln

[
2k + (N − 1)k′

2 + (N − 1)k′

]
+ F3(1). (A16)

Performing the limit k′ → ∞, we recover indeed the result
from the previous section:

lim
k′→∞

[F3(k) − F3(1)] = F2(k) − F2(1). (A17)

4. With fixed midplanes

In our nucleosome model we do not fix the positions
of base pairs but of certain midplanes to mimic the bound
phosphates. Therefore we study here entropy and energy of
the corresponding one-dimensional system. Let us begin with
two fixed midplanes at positions x1 and x2. We assume n1

beads to the left of x1, n2 beads between x1 and x2 and n3 beads
to the right of x2. The fixed midplanes allow us to eliminate
four degrees of freedom in the Hamiltonian:

qn1 + qn1+1

2
= x1,

qn1+n2 + qn1+n2+1

2
= x2 (A18)

and

pn1 = −pn1+1, pn1+n2 = −pn1+n2+1. (A19)

The kinetic part of the Hamiltonian is then given by

⇒ H4, kin =
n1+n2+n3∑

i=1

′ p2
i

2m
+ p2

n1

m
+ p2

n1+n2

m
, (A20)

where the sum, �′, skips i = n1, n1 + 1, n1 + n2, and n1 +
n2 + 1. The potential part reads

H4, pot =
n1+n2+n3−1∑

i=1

′ k

2
(qi+1 − qi − l )2

+ 2k

(
x1 − qn1 − l

2

)2

+ 2k

(
x2 − qn1+n2 − l

2

)2

+ k

2

(
qn1+2 + qn1 − 2x1 − l

)2

+ k

2

(
qn1+n2+2 + qn1+n2 − 2x2 − l

)2
, (A21)
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FIG. 10. One-dimensional chain with N − 1 fixed midplanes.

with the sum, �′, defined as above. The system behaves as if
we had removed particles n1 + 1 and n1 + n2 + 1, equipped
particles n1 and n1 + n2 with half the mass and attached them
to x1 and x2 via springs with stiffness 4k. As in the previous
sections one can calculate the potential part of the partition
function,

Z4, pot =
(

2π

βk

) n1+n2+n3−2
2

√
1

16n2 − 8

× exp

{
−βk[x2 − x1 − (n1 − 1)l]2

2n2 − 1

}
, (A22)

from which we calculate the free energy

F4(k) = n1 + n2 + n3 − 2

2β
ln k

+ (x2 − x1)2

2n2 − 1
(k − 1) + F4(1). (A23)

We find a similar k dependence of the energy as for the
rigid constraints, Eq. (A9), only that the effective number of
particles (between the constraints) is half-integer, n2 − 1/2,
instead of n2 + 1.

In our nucleosome model, we fix 28 midplanes. Thus, let
us generalize the system to a chain of Ntot = ∑N

i=1 ni = Nn
particles, see Fig. 10. We constrain the midplanes xi between
subchains ni+1 and ni such that xi+1 − xi = �x. The particles
1 and Nn are unconstrained, whereas each internal subchain
is bound to particles constrained by midplanes. After a longer
calculation we find the free energy of the form

F5(k) = Nn − (N − 1)

2β
ln k

+ 1

2
CD(N, n)(k − 1) + F5(k = 1), (A24)

with

C = (�x)2

n − 1
. (A25)

Unfortunately, we did not find a closed analytical form for
D(N, n) which can be written as a matrix product.

With this, we can calculate the stiffness k0 for which F (k)
is minimal, because entropic [first term in Eq. (A24)] and
energetic contributions [second term in Eq. (A24)] to the k
dependence are equal:

k0 = N − 1

D(N, n)

kBT

C
. (A26)

As for the fixed particles [Eq. (A13)], k0 is proportional to
kBT/C, although the proportionality factor depends on N and
n in a nontrivial manner. Calculating D(N, n) for 3 � N � 40
and 2 � n < 40, we find that D(N, n) is of order N − 2, see
Fig. 11. This yields once again k0 ≈ kBT/C.

APPENDIX B: THE DINUCLEOTIDE PROBABILITIES
IN UNCONSTRAINED DNA

We calculate here the dinucleotide probabilities of free
DNA. The Hamiltonian of the rigid base-pair model is given
by Eq. (1). The partition function of an N + 1-bp-long free
DNA chain is then given by

Zfree =
∫ N∏

a=1

dxa exp

[
−β

2

(
xa − xa

0

)T
Ka(xa − xa

0

)]

=
∫ N∏

a=1

dxa exp

[
−β

2
(xa)T Kaxa

]

=
N∏

a=1

√
64π6k6

BT 6

det Ka
. (B1)

Note that the first step contains an approximation as we set the
Jacobian determinant for the transformation from canonical
momenta to configuration-independent momenta as defined in
Ref. [64] to 1; we checked that even for the strongly deformed
nucleosomal DNA geometry this quantity takes values close
to 1 (namely between 0.95 and 1). From this we obtain the

FIG. 11. D(N, n) for 3 � N � 40.
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sequence-dependent free energy of unconstrained DNA:

Ffree({Ka}) − Ffree(K = 1) = kBT

2

N∑
a=1

ln det Ka

= −T
N∑

a=1

Sfree(sa−1, sa), (B2)

where S is the stiffness-dependent entropy contribution of the
dinucleotide (sa−1, sa).

This allows us to compute the dinucleotide probabilities in
a free DNA molecule with the transfer matrix method used in
Refs. [42] and [46]. The transfer matrix M is defined in the
nucleotide basis B = {|A〉 , |C〉 , |G〉 , |T 〉}:

〈n | M | m〉 ≡ exp[−βFfree(n, m)]

= exp[Sfree(n, m)/kB] = 1√
det K(n, m)

, (B3)

which corresponds to the Boltzmann weight of the dinu-
cleotide (n, m). To compute the probability Pi of this dinu-
cleotide at position i, we need to take the Boltzmann weight of
all possible neighboring sequences into account and compare
it to the Boltzmann weight of all possible sequences:

Pi(a, b) =

∑
n0,nN

〈n0 | Mi | a〉〈a | M | b〉〈b | MN−i−1 | nN 〉∑
n0,nN

〈n0 | MN | nN 〉 . (B4)

The configuration, and therefore the transfer matrix, is not
position dependent, in contrast to the nucleosome. Still, the
dinucleotide probabilities are position dependent, because for
dinucleotides at the 5′ or 3′ end the entropy of possible 3′ or
5′ neighbors does not matter, in contrast to dinucleotides in
the middle of the DNA molecule. However, these boundary
effects are only relevant to dinucleotides in the immediate
vicinity of the 5′ or 3′ end, see Figs. 4(c) and 4(f).
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