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We study a possible electrostatic mechanism underlying the compaction of DNA inside the nuclei of eu-
caryotes: the tail-bridging effect between nucleosomes, the fundamental DNA packaging units of the chromatin
complex. As a simple model of the nucleosome we introduce the eight-tail colloid, a charged sphere with eight
oppositely charged, flexible, grafted chains that represent the terminal histone tails. We show that our com-
plexes attract each other via the formation of chain bridges and contrast this to the effect of attraction via
charge patches. We demonstrate that the attraction between eight-tail colloids can be tuned by changing the
fraction of charged monomers on the tails. This suggests a physical mechanism of chromatin compaction where
the degree of DNA condensation is controlled via biochemical means, namely the acetylation and deacetylation

of lysines in the histone tails.
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I. INTRODUCTION

Plant and animal (eucaryotic) DNA is meters long but has
to fit inside micron-sized nuclei. At the same time a consid-
erable fraction of the genetic code stored within the highly
compacted DNA has to be accessible to the cellular machin-
ery. To achieve this remarkable task, the compacted DNA is
folded in a hierarchical fashion [1]. At the first step two turns
of DNA are wrapped around cylinders made from eight his-
tone proteins. This results in a string of cylindrical DNA
spools about 10 nm in diameter and 6 nm in height, each
repeating unit being called a nucleosome [2]. As the next
compaction level one posits typically the chromatin fiber
with a diameter of about 30 nm which again forms higher
order structures such as loops. The density of such structures
varies along the fiber and in the course of the cell cycle and
is presumably directly related to the genetic activity with the
dense regions corresponding to “silenced” parts [3].

How does a eucaryotic cell cope with the challenge of
combining high compaction and (selective) accessibility at
the same time? Recent experiments and theories give us an
idea of how the nucleosome is meticulously designed to face
that challenge. In principle, when DNA is wrapped onto the
protein cylinder, it is in a ‘“closed” state inaccessible for
DNA binding proteins. However, thermal fluctuations open a
window of opportunity for such proteins via the unwrapping
of either one of the two turns [4—7] or via a corkscrew slid-
ing of the octamer along the DNA chain [8-10]. Active slid-
ing of nucleosomes along DNA is induced via remodeling
complexes [11].

At the next compaction levels the situation is less clear.
The chromatin fiber has roughly 40 times shorter contour
length than that of the DNA chain that it contains but it is, at
the same time, much stiffer than the naked DNA. The result-
ing coil size of the chromatin fiber would still be much larger
than the diameter of the cell nucleus (cf. footnote 8 in Ref.
[12]). This makes nucleosome-nucleosome attraction neces-
sary as a further means of compaction, a mechanism that
should be tunable allowing dense and transcriptionally pas-
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sive fiber sections as well as more open and active ones.
Important questions ensue: Do nucleosomes attract each
other, and what is then the underlying mechanism? And how
can this interaction be tuned for individual nucleosomes?
Recent experiments indeed point towards a simple physical
mechanism that causes attraction between nucleosomes: the
histone tail bridging [13-15]. The histone tails are flexible
extensions of the eight core proteins that carry several posi-
tively charged residues [2,16] and extend considerably out-
side the globular part of the nucleosome. Mangenot et al.
[13] studied dilute solutions of nucleosome core particles
(NCPs; the particles that are left when the nonadsorbed
“linker” DNA is digested away). From small angle x-ray
scattering it was shown that NCPs change their size with
increasing salt concentration: At around 50 mM monovalent
salt the radius of gyration increases slightly (from
43 to 45 A) and, at the same time, the maximal extension of
the particle increases significantly (from 140 to 160 A). This
observation was attributed to the desorption of the cationic
histone tails from the NCP that carries an overall negative
charge (cf. Ref. [1]). Osmometric measurements [14] de-
tected around the salt concentration where the tails desorb an
attractive contribution to the interaction between the NCPs,
manifest in a considerable drop of the second virial coeffi-
cient. The coincidence of the ionic strengths where both ef-
fects occur led Mangenot et al. to suggest that it is the tails
that are mainly involved in the attractive interaction. This
picture was supported by another study [15] where it was
shown that there there is no attraction for tailless NCPs.
Theories for nucleosomal attraction come to diverging
conclusions. Attraction between simplified model nucleo-
somes has been reported in a nucleosome model [17,18,20]
that ignored the tails. The nucleosome was modeled by a
positively charged sphere (representing the protein core) and
a semiflexible anionic chain (the DNA) wrapped around. The
interaction between two such complexes (at zero tempera-
ture) showed an attraction at intermediate salt concentrations
that leads to a nonmonotonic behavior of the second virial
coefficient with the minimum reflecting the attractive regime
(cf. Fig. 4 in Ref. [17]). In a more general context, this kind
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of nonmonotonic interaction can be interpreted to belong to
the class of attraction induced by correlations between
charge patches [19]. An example provides a computer simu-
lation of Allahyarov et al. [20] who studied the interaction
between spherical model proteins decorated with charge
patches; the second virial coefficient featured a nonmono-
tonic behavior as a function of ionic strength.

On the other hand, Podgornik [21] focused on tail bridg-
ing in a model where the NCP was represented by a pointlike
particle with an oppositely charged flexible chain. This sys-
tem showed NCP-NCP attraction but no nonmonotonic be-
havior of the second virial coefficient. Thus the question
arises whether it is really the tail bridging that causes the
attraction between NCPs observed at intermediate salt con-
centrations. Earlier studies had already established that poly-
electrolyte chains form bridges between charged planar sur-
faces [22,23] and colloids [24,25] (carrying charges of a sign
opposite to the chain) that cause attraction. An interesting
demonstration of the difference between attraction due to
charge correlations and due to bridging was given by con-
tinuously changing the stiffness of the entropic springs con-
necting neighboring monomers of the polyelectrolyte chain
[22]: A vanishing spring constant leads to the usual repulsive
double layer force due to the counterions in between the
walls, harder springs lead to polyelectrolyte chains that cause
bridging, and finally very hard springs induce a collapse of
each chain onto a point which corresponds to multivalent
counterions that cause attraction due to charge correlations.
Both effects, bridging and charge correlations, lead to attrac-
tive regimes that were clearly separated from each other (cf.,
e.g., Fig. 8 in Ref. [22]). Of interest is also the observation
that bridging interactions induced by free chains are very
similar to those of chains that are grafted on either surface
[23].

Although those earlier studies provided already substan-
tial insight into bridging interactions, several issues remained
open, especially in the light of the new experimental [13,14]
and theoretical studies [16,18]. The purpose of the current
study (which presents an extended, more detailed version of
Ref. [12]) is fourfold: (i) to introduce a minimal model for
NCPs that includes its tails, (ii) to test whether such a model
shows attraction with a nonmonotonically varying second
virial coefficient, (iii) to put tail bridging on a stronger foot-
ing and demonstrate how the ensuing effect is qualitatively
different from attraction through charge patches, and (iv) to
demonstrate how tail bridging can be used to facilitate con-
trol of nucleosomal interaction which in turn might affect the
compaction state of chromatin.

In the next section we introduce our NCP model, the
eight-tail colloid. In Sec. III we present single colloid prop-
erties. The following sections focus on the interaction be-
tween two colloids: the pair potential and second virial co-
efficient for eight-tail colloids and simplified colloid models
in Sec. IV, details of the tail bridging in Sec. V, and the
dependence of the interaction on the tail charge fraction in
Sec. VI. Section VII presents a variant of the eight-tail col-
loid where the tails are attached via freely floating anchors.
Finally, the last section presents discussions and conclusions,
especially regarding the role of tail bridging within the chro-
matin complex.
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FIG. 1. (Color online) The eight-tail colloid. Eight polyelectro-
Iyte chains are grafted onto the surface of an oppositely charged
sphere. Both pictures show the identical colloid but highlight a
different set of stiff harmonic bonds. The first set on the left is given
by eight bonds from the colloidal center to the grafted monomers
that enforce them to lie on the surface of the colloidal sphere. The
second set of bonds is shown on the right that act between neigh-
boring grafted monomers so that they sit on the vertices of a cube.

II. EIGHT-TAIL MODEL FOR THE NCP

We give in the following a more detailed presentation of
our NCP model, the eight-tail colloid, that we introduced in
Ref. [12]. Tt consists of a sphere with eight end-grafted poly-
mer chains, cf. Fig. 1. The sphere represents here the NCP
without the tails, i.e., the globular histone octamer with the
DNA wrapped around. The sphere carries a negative charge
—Z homogeneously smeared out over the surface to account
for the net charge of the DNA-octamer complex; the nega-
tive sign reflects the fact that the DNA overcharges the cat-
ionic protein core [1]. The sphere radius is chosen to be a
=150 with =3.5 A being our unit length.

The eight histone tails are modeled by flexible chains end-
grafted onto the sphere. Each chain consists of 28 monomers
of size o where each third monomer carries a positive unit
charge, the rest being neutral. All these parameters have been
chosen to match closely the values of the NCP; our tails
feature the average length of the N-terminal tails whose
lengths range from 15 residues (histone H2A) to 44 (H3).

The bonding interactions of the neighboring monomers of
the chains were modeled using the finitely extensible nonlin-
ear elastic (FENE) potential [26]. Excluded volume of the
tail monomers and the cores are described by purely repul-
sive Lennard-Jones (LJ) potentials. The corresponding inter-
action between two tail monomers is given by

12 6
ol o

for distances r<r/"" with r/'=2"%¢ and zero otherwise.

The interaction between a tail monomer and a core of radius
a is given by the slightly modified expression

o \P? o\ 1
V;ljm(r)=4ELJ|:(r_a> _<r—a) +Z} (2)

. cm cm _~1/6 1
for distances a <r=r,, with r,;;=2""0+a. Again the poten-

tial is O for r>r{,,. Since the positions of the cores are fixed
in our simulations and are always larger than the core diam-
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eter, excluded volume interactions between the cores have
not to be specified here.

We fix the grafted chains onto the sphere surface at the
vertices of a cube. The grafting potential

Vgraft(r) = 1/2kgraft(r - a)2 (3)

is applied between one end monomer of each chain and the
center of the sphere, as illustrated on the left side of Fig. 1.
Here r represents the distance between the grafted monomer
and the core, kg, denotes the spring constant. Similarly we
apply a potential to keep constant relative distances r be-
tween grafted monomers of neighboring tails:

chbe(r) = 1/2kcube(r - rcube)2> (4)

with 7. being the length of an edge of the resulting cube,
as indicated on the right of Fig. 1.

In addition, all charged monomers and the central sphere
experience an electrostatic interaction via the standard
Debye-Hiickel (DH) theory with an inverse screening length
Kk=\4mlgc,, where c, denotes the monovalent salt concentra-
tion and [z=20 sets the Bjerrum length in water at room
temperature ([z=e?/€ekyT; e: electron charge; e: dielectric
constant of solvent; kzT: thermal energy) [27]. Since we use
a DH potential, we need to use an effective value —Z;; for
the central charge to account for charge renormalization [28].
Inside a cell nucleus the salt concentration is about 100 mM
of sodium chloride, which corresponds to a value of x of
approximately 0.40~!. The effective pair potential for two
monomers, which can be treated as pointlike charges, is then
given by

pu(r) . exp(= «r)
=1l .

kgT r ®)

In the case of the interaction of a monomer and a core the
interaction becomes

Via(r exp(ka) exp(—
pa(r) =71, p(xa) exp( KV). )
kgT 1+ ka r
Finally the core-core interaction can be written as
Vou(r) _ exp(2ka) exp(= «r) o
kgT B(1 + ka)? r '

In the simulations presented in this work, [z was chosen to be
20. This value corresponds to the Bjerrum length of water,
which is about 7 A.

A velocity Verlet algorithm with a standard Langevin ther-
mostat [29] is used to integrate the equation of motion (time
step 0.017, friction coefficient I'=7!, Lennard-Jones time
unit 7):

mir==VV(r)=Tr+ &Q). (8)

Here r and m denote the position and the mass of a particle.
V(r) describes the corresponding potential and &(¢) the ran-
dom collisions of the surrounding medium. &(¢) is a
S-correlated Gaussian noise term with (£)=0 and
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TABLE 1. Simulation parameters.

Parameter Symbol value
Unit length o 35A
Bjerrum length lp 20
Time step At 0.017
Thermal energy kT €7
Core central charge V4 150
Monomer charge —e
Core radius a 150
Friction constant r €, 707
Parameters for the
Graft potential Kgraft 2¢;,/ 07
Tgraft a
Cube potential keube 2¢;,/ 07
Teube 17.30
FENE potential krENE Tep, !l
F'FENE 20
Monomers per chain N 28
Charged monomers per chain 10
(&(DE,(1")) = 6KTT 5;8(t —1'). )
¢ is adjusted via the fluctuation-dissipation theorem, for the

simulations presented here I" was set to 1 EZ’;.

A summary of the simulation parameters is provided in
Table I. These values were used throughout the simulations
unless stated differently.

III. PROPERTIES OF SINGLE EIGHT-TAIL COLLOIDS

Figure 2 depicts the diameter of a single eight-tail colloid
as a function of ka and Z, with —Z being the charge on the
sphere. The diameter is defined as the thermally averaged
maximal distance D,,,, between the two most distant tail
monomers:

Dmax:<\’(;i_7j)2> (10)

Here i and j denote the two monomers of the complex
that—at the given time—have the maximal distance from
each other. We varied Z from 0 to 300 and « from O to 1,
corresponding to salt concentrations from 0 to 5 mol. We ob-
tained D,,,, at each pair of parameters by performing a simu-
lation run for 10° time steps, discarding the first 2.5 X 10°
time steps to allow the system to equilibrate.

For Z=0 and small values of «, i.e., at low ionic strength,
the eight tails are extended, radially pointing away from the
center of the complex, cf. the example at ka=0. For large
values of Z, say, for Z> 100, and small « the tails are con-
densed onto the sphere, cf. the configuration at Z=300 and
ka=0. Increasing the screening leads finally in both cases to
structures where the chains form random self-avoiding poly-
mer coils as the ones in the example configuration at the left
of Fig. 2.

Consider a complex with condensed chains for some low
k value and some Z>100. With increasing « the chains de-
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FIG. 2. (Color online) Average diameter D,,,, of the eight-tail
complex—defined in Eq. (10)—as a function of xa and Z. For a
neutral sphere, Z=0, the colloid is extended in the absence of salt,
xa=0 (cf. the example configuration on the upper right corner) and
decreases with increasing salt to a structure like the one depicted on
the left. A highly charged complex, e.g., Z=300, features collapsed
tails for no salt (cf. the colloid on the lower right) and shows for
high salt, i.e., strong screening, also configurations like the one
shown on the left.

sorb around a certain « value which is larger for larger Z. A
comparison of our curves for Z> 100 with the experimental
ones [13] shows a qualitatively similar chain unfolding sce-
nario. Furthermore, by choosing Z=150 we are able to match
closely the experimental and the simulation values of c¢; at
which tail unfolding takes place. In the following we will
therefore always use this value as our Z,.

Figure 3 presents the densities of the tail monomers above
the surface of the sphere with Z=150 for different salt con-
centrations. In the absence of salt, k=0, most monomers
are located very close to the surface such that the density is
practically zero for distance beyond 5o. Around physiologi-
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FIG. 3. (Color online) The radial monomer densities of the tails
grafted on a sphere with Z=150 as a function of distance above its
surface. The different curves correspond to different salt concentra-
tions leading to ko=0 (solid line), xo0=0.3 (dashed line), ko=0.4
(dashed-dotted line), ko=0.5 (dotted line), and ko=1.0 (solid line).
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cal conditions, ko=0.4 there is a small but finite probability
to find monomers also further apart from the surface up to a
distance of, say, 100. Finally, at stronger screening the tails
are essentially desorbed which is reflected by a broad distri-
bution of the monomer density.

IV. INTERACTION OF COMPLEXES

We next determine the pair potential between eight-tail
complexes and study how this potential is affected by a
change in the ionic conditions. In order to do so, we fix two
complexes at a constant distance from each other and run ten
MD simulations of 10° time steps with different starting con-
ditions. 2.5 10° time steps are removed for equilibration,
for the rest of the time the interacting force on the cores is
measured every 250 time steps. This results in 3000 data
points for each of the ten samples. Note that the complexes
are allowed to rotate freely around their center of mass. The
mean interaction force between the two complexes is then
determined as the force projected on the connecting line of
the two centers:

Lo =
Fim:5<(F2_Fl)'e]2>~ (11)

F ; is the effective force felt by the core of complex i and ¢,
denotes the unit vector from the center of complex 1 to the
center of complex 2. The brackets (- --) denote thermal aver-
aging. The mean force is defined in such a way that one has
F+<<0 in the case of attraction.

The upper half of Fig. 4 shows exemplarily one of the ten
sets of the force distance relation between complexes for the
case k=0.40""; the other values are given by Table 1. The
mean forces determined by the simulation are represented by
the small symbols. The curve plotted through the data points
shows the least squares fit obtained by fitting the data by the
product of an exponential and a rational function.

The resulting ten functions were averaged and the result-
ing function was integrated to obtain the pair potential func-
tion V(r) for a given salt concentration. From the ten func-
tions the statistical error for the parameters was estimated
and used to calculate the thinner lines above and below the
potential of mean force that indicate the statistical error of
the potential itself, cf. Fig. 4.

From the pair potential we calculated A, via

Ay=dvg+2m| [1—exp(= V(r)/kT 1Pdr (12)
2a

with v denoting the excluded volume of the core sphere. For
each salt concentration we obtained ten independent values
of A, that allowed us to estimate the statistical error.

As can be seen from the example provided in Fig. 4 there
is a range of distances where the mean force between the
colloids is negative, i.e., where the colloids attract. As a con-
sequence the potential features a minimum. In Fig. 4 we also
provide a comparison to the system of two tailless spheres
that carry the same net charge as the eight-tail colloids,
namely —Z+8 X 10=-70. Within the DH approximation this
case does of course not show any attraction as can be seen by
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FIG. 4. (Color online) Mean force and resulting pair potential
between two complexes. Top: force as a function of surface-surface
separation of the cores for ka=0.4. The symbols represent the mea-
sured mean force, the line shows a mean square fit. Bottom: pair
potential between two complexes obtained via integration and av-
eraging over a sample of fitted force functions. For comparison also
depicted are the force-distance and potential-distance curves (red)
for two charged spheres without tails that carry the net charge Z
=70 of the eight-tail colloid.

inspecting Eq. (7) with Z=70 which is depicted as the red
curve at the bottom of Fig. 4. In the following we will in-
vestigate closely the mechanism that leads to the attraction
between eight-tail colloids.

A. Eight-tail colloid

The inlay of Fig. 5 presents the pair potentials between
two complexes, obtained via the procedure described above.
The different curves correspond to four different values of k
as explained in the caption of the figure. For all four values
we find an attractive potential with a minimum of a few k7.
Remarkably the depth of the potential shows a nonmono-
tonic behavior with x with the maximal value around «o
=0.3.

From the potentials determined for different values of «
we obtain A, as a function of « that is also depicted in Fig. 5.
Not surprisingly, the nonmonotonic dependence of the poten-
tial depth with « is reflected by a nonmonotonic dependence
of A, with a minimum around xo=0.3.

Apparently, the attraction is based on electrostatics. But
what is the physical mechanism underlying this attraction? In
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FIG. 5. A, of the multi chain complex. The inlay shows the pair
potential of two multichain complexes as a function of the surface
distance for different values of . The values for « are 0.207 " (black
solid), 0.307 ! (black dashed), 0.40~" (black dot-dashed), and 0.607!
(gray solid).

principle, there are two mechanisms that could cause the
attraction: Patchiness or tail bridging. Our eight-tail colloid
might be interpreted—in a coarse-grained spirit—as a colloid
with eight charge patches and the correlation between those
patches might cause the attraction. Or, if only one tail is
actually causing the attractive effect, the number of tails is to
a large extent irrelevant and attraction might be based on the
bridging of the corresponding tail.

To find out the characteristics of these two mechanisms
we introduce here two colloid models that are simpler than
the eight-tail colloid and that should show the two different
effects in a clean fashion: a colloid with patches but no tails
is one model, the other is a colloid that features just a single
tail. In the next subsection we will demonstrate that both
models lead to a nonmonotonic dependence of A, on « as
well.

B. Simplified models

We consider first a colloid with patches. This colloid is
obtained by removing the eight tails and just leaving the
eight grafted monomers. Each of those monomers carries
now the total charge of its former tail, i.e., a charge +10.
That means that the eight-patch colloid has the same total
charge as the eight-tail colloid.

The pair interaction potential of two such eight-patch col-
loids is presented in the inset of Fig. 6. The different curves
represent different values of «, as indicated in the caption
text. For all investigated values of k we find a minimum in
the potential that for the case ko=0.2 is only a local mini-
mum. The minima are now at smaller surface-surface sepa-
rations of the colloids as compared to the eight-tail com-
plexes. Remarkably, also the eight-tail complex shows a
nonmonotonic dependence of the depth of the potential mini-
mum on « and as a result a nonmonotonic behavior of A,, cf.
Fig. 6. The minimum of A, is again around “physiological”
conditions ka=6 (ko=0.4). This might suggest that the at-

031919-5



MUHLBACHER, SCHIESSEL, AND HOLM

OoF o 00 o o o o
(]
—1F +
—2F
0‘)’; _3_ E
l\o 2
T 4 5
5 £
2} (] £ ee-szzimesmmeeces
£ g P
S &
£ -6f
N N
08 -
-7+ 0 1 2 3 4 5 6
distance [in units of o]
_8 1 1 J
0 5 10 15

Ka

FIG. 6. (Color online) A, of the patch model. The inlay shows
the pair potential of two patch complexes as a function of the sur-
face distance for different values of «. The values for « are 0.207
(black solid), 0.307 ! (black dashed), 0.40~" (black dot-dashed), and
0.6 (gray solid).

traction between eight-tail colloids is essentially based on
correlations between patches with the patches being repre-
sented by the tails.

To see whether a similar effect can also occur in the ab-
sence of patches we consider next the interaction between a
one-tail colloid and a colloid without a tail. This way we
make sure that no correlation effects between different tails
can occur. More specifically, the single-tail colloid is derived
from the eight-tail colloid by removing seven tails and add-
ing the charges of those seven tails to that of the central
sphere that now carries a charge —Z+7 X 10. The charge of
the tailless sphere is —Z+8 X 10, i.e., both colloids carry the
same charge as the eight-tail colloids. We enforce—to
achieve better statistics—that the grafting point of the tail is
always pointing towards the other colloid and determine the
interaction between the single-tail colloid and the tailless
colloid.

The inset of Fig. 7 shows the pair potential for this system
that features for intermediate salinity, ko=0.4 and ko=0.5 a
minimum whereas for smaller and larger values of « the
potential is purely repulsive. Consequently A, as a function
of k also has a nonmonotonic behavior with a minimum
around ko= 0.5. In this model we eliminated any influence
of patchiness due to multiple tails, so the attraction that we
observe here is mediated by the single tail present in the
system.

To conclude, both mechanisms, correlation between
patches and tail bridging induce attraction with a nonmono-
tonic dependence on the salt concentration. What is then the
mechanism underlying the attraction between eight-tail col-
loids?

C. Range of the interaction

In this subsection we provide a criterion that allows to
distinguish between correlation of patches and tail bridging:
the decay of the potential at larger distances.
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FIG. 7. (Color online) A, of the single chain model. The inlay
shows the pair potential of two single chain complexes as a function
of the surface distance for different values of . The values for « are
0.2307! (black solid), 0.400™" (black dashed), 0.5167! (black dot-
dashed), and 0.8157! (gray solid).

The upper row of graphs in Fig. 8 display semilogarithmic
plots of the attractive part of the pair potential between eight-
tail colloids for different values of «. The straight lines rep-
resent a simple exponential function C-exp(—«r) which de-
cays with the DH screening length. Here C is chosen such
that the line passes through the minimum of the potential.
For ka=3.0 the potential decays faster than the electrostatic
screening but for larger values, especially for ka=6.0 and
ka=9.0 it decays slower than the normal electrostatic screen-
ing. This effect is a strong indication that it is in fact tail
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FIG. 8. (Color online) Range of the interaction. The upper line
of plots represent the attractive part of the pair interaction of the full
chain model on a logarithmic scale for different values of « as
indicated by the labels. The red line indicates the impact of the
screening and is proportional to —C exp(—«d). The plots in the
middle and at the bottom represent the patch model and the single
chain model, respectively.
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FIG. 9. Monomer density of bridges for different values of the
surface-surface separation. The values are d=0 (solid black line),
d=40 (black dot dashed line), d=7¢ (gray solid line), and d=9¢
(gray dashed line). For d=9¢ the distribution shows two maxima,
indicating the preference of the monomers to stay on the surface of
one of the charged cores. The inlay shows the probability distribu-
tion of the closest approach of a monomers to the alien core for d
=60 (solid line), d=8c (black dashed line), d=90 (grey solid line),
and d=130 (gray dashed line); see text for details.

bridging that underlies the attractive interactions observed in
the eight-tail colloids.

To check this we show in the middle row of plots in Fig.
8 the attractive part of the pair potential between eight-patch
colloids. Clearly, in all cases the potential decays much faster
than electrostatic screening C-exp(—«r) that is also provided
in each plot. Apparently patchiness leads to an attraction
with a decay length smaller than «~'. Finally, the last line of
plots represent the single chain model for k values where one
has attraction. Also here is a clear indication of a slower
decay of the potential as for pure electrostatics.

To conclude, the evidence based on the range of the at-
tractive interaction points clearly towards tail bridging as the
dominant mechanism that leads to attraction between eight-
tail colloids. In the next section we will focus on details of
the bridge-forming tails.

V. TAIL BRIDGING

In this section we take a closer look at the tail bridging
mediated attraction. Figure 9 displays monomer distributions
for different surface-surface separations of the two colloids.
The inset of Fig. 9 presents the density distribution of a
special monomer, namely the one of all the 16 tails that—for
a given configuration—is closest to the surface of the other
colloid. The X axis represents the distance of this monomer
to the surface of the other colloid. A nonvanishing value of
that monomer density at a small distance signals the occur-
rence of bridges. The curve in the inlay that corresponds to a
surface-surface separation of 130 does show a broad peak
around 110 reflecting the fact that most of the time all the
monomers stay close to their home core and that there is no
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FIG. 10. Separation of the total average of the interaction force
(circle) into the part stemming from configurations that feature
bridges (squares) and nonbridging configurations (diamonds).

bridging. With decreasing separation between the colloids a
second peak at very small distances appears that reflects the
occurrence of bridges where the monomer of closest ap-
proach is found nearby the surface of the other colloid. This
peak grows at the expense of the other peak when the col-
loids get closer which demonstrates the increasing occur-
rence of bridging. Note that for intermediate surface-surface
separations there is a minimum in the density distribution
around 3.60. This allows us to establish a criterion to iden-
tify tails that form a bridge: we define a bridge-forming tail
as a tail where at least one of its monomers has a separation
from the alien colloidal surface that is smaller than 3.60.

The main plot of Fig. 9 presents the distribution of all the
monomers of such bridge-forming tails for different values
of the surface-surface separation of the cores. For small dis-
tances between the cores there are almost always bridges.
The monomer distribution of the tails shows a strong peak
around a distance of 2.5¢. This peak can also be seen at
much larger distances like d=70 and d=90. For such large
distances the distribution is, however, bimodal. The peak at
short distances (around 2.50) reflects condensation of tail
monomers on the home core whereas the second peak at
larger distances can be attributed to condensation on the
other core. The bimodal monomer distributions of bridges
contrast that of “normal” tails that is shown in Fig. 3.

Figure 10 shows the pair interaction force between two
eight-tail complexes (circles) and the contribution from tail
bridging configurations (squares) and configurations without
bridges (diamonds). As can be clearly seen, the tail-bridging
configurations are the ones that cause the overall attractive
interaction whereas the average interaction of nonbridging
configurations is purely repulsive.

We consider next the bond frequency defined as the frac-
tion of time when two colloids show bridged configurations.
In Fig. 11 we display for different values of k—as indicated
in the legend—the bond frequency as a function of the
surface-surface separation. As can be seen from this plot the
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FIG. 11. (Color online) Frequency of bridges as a function of
the surface-surface separation for different values of «.

frequency shows approximately an exponential decay with
distance for k>0.30"! and d>90.

This exponential decay of the bond frequency can be ra-
tionalized by a simple physical argument [30]. Monomers
that are adsorbed on the home core or the alien core feel an
adsorption energy [cf. Eq. (6)],

Cads _ pu(07/2) - D;I(O)_ Z
keT ~— kgT keT Pa(l+ka)’

where we neglected on the right-hand side the monomer ra-
dius.

Two eight-tail colloids that are closer to each other than
the contour length of a tail can feature a bridge. The cost of
a bridge can be estimated from the number of charged bridge
monomers that need to be in between the two cores. These
are on the order of =\(d— ") monomers with A\ =f/ o being
the line density of the bridge forming tail that is assumed to
be stretched out (f: fraction of charged monomers). We thus
expect that the probability of finding a bridge, py,qq. Scales
as follows:

(13)

pBridge o eXP(— eads)\d/kBT) . (14)

We checked Eq. (14) by fitting the bond frequency found
in our simulation with an exponential function g(d)=A
exp(-my;,d) with the two parameters A and my;,. Figure 12
shows the ratio of the fitted exponent mg;, from the simulated
data divided by its predicted value my,,,=€,N kgT as a
function of «. This ratio is indeed always close to 1.

VI. VARIATION OF THE TAIL CHARGE

Equation (14) suggests a strong dependence of the bond
frequency on the charge fraction f of the tails. In this section
we study in more detail how the pair interaction between
eight-tail colloids is affected by a change in the tail charge.

Up to now our tails were 28 monomers long with each
third monomer being charged (including the terminal mono-
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FIG. 12. (Color online) Comparison of the decay parameters
my;,, obtained from simulated data to our theoretical estimate 11,
See text for details.

mers). As a result each tail carried ten charged monomers
leading to a charge fraction f=10/28~0.36. In this section
we will use tails with charge fractions ranging from 0.17 to
1. As detailed in Table I we achieve this by changing the
numbers of neutral monomers between charged ones. As be-
fore we request in addition that the terminal monomers are
charged which requires to choose a tail length of either 28 or
29 monomers. In our simulation we always choose «
=0.407".

In Fig. 13 we present the pair interaction between two
such eight-tail complexes as a function of distance for differ-
ent values of f. These curves were obtained along the same
lines as described in Sec. IV. The overall picture is the fol-
lowing (cf. Fig. 13): With increasing f the minimum of the
pair potential becomes deeper and moves to smaller dis-
tances. Remarkable is especially how sensitive the depth of
the pair potential depends on f: The potential depth for our
canonical value f=0.36 is around —5kzT and that for f
=0.28 is around —1kzT, i.e., the reduction by two monomers
per tail nearly erases the minimum. In fact, for f=0.17 the
minimum has totally disappeared. As we will suggest in the
concluding section, it is that strong sensitivity of the interac-

TABLE II. The charge fraction of the tails is varied by changing
the number of charged monomers. The table presents the charge
fraction, the number of charged monomers, the total number of
monomers, and the number of neutral monomers between two con-
secutive charged monomers for the investigated cases.

Charge Charged Total Neutral monomers
fraction monomers monomers between charges
0.17 5 29 6

0.28 8 29 3

0.36 10 28 2

0.52 14 29 1

1.00 28 28 0
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FIG. 13. (Color online) Interaction potential as a function of the
surface-surface separation for ko=0.4 and different charge frac-
tions f of the tails. Also shown is a typical configuration for weakly
charged tails, f=0.17.

tion on single tail charges that is used by the cellular machin-
ery as one mechanism to control the compaction of DNA
inside chromatin.

In Fig. 14 we plot the equilibrium distance for two eight-
tail colloids as a function of the charge fraction f for those f
values where the pair potential features a minimum, i.e., ex-
cluding the case f=0.17. For each value of f we depict also
a typical configuration of two colloids at the equilibrium
distance. As can be seen from those examples there is a
gradual change in the configurations from those that feature
tail bridging (for smaller f values) to structures where the
underlying mechanism for attraction must be of different ori-
gin, especially for the case f=1. In that case the equilibrium
distance is found around 1o which allows just one monomer

6r

_[inunitsof o]

min
N

D

1.2

FIG. 14. (Color online) Equilibrium surface-surface separation
of two eight-tail colloids as a function of the charge fraction f of the
tails. Also shown are example configurations at those optimal
distances.
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FIG. 15. Pair interaction potential of the floating chain model
(dashed line) and that of the eight-tail colloid with fixed grafting
points (gray line). Both models feature a minimum of about —5¢ at
approximately 4o surface-surface separation. The minimum of the
eight-tail colloid is slightly deeper.

to squeeze in between the two colloids. All the tails are
tightly adsorbed on the surface of their own cores and are
arranged such to mutually avoid each other, hence are
strongly correlated. One tail of one colloid is located in the
contact area between the two balls. This overall picture is
very similar to the patch model discussed in Sec. IV B and
the resulting potential with the deep minimum at short dis-
tances compares well to the one shown by the patch model,
cf. the inset in Fig. 6 that features correlation based attrac-
tion.

VII. FLOATING CHAIN MODEL

Up to now we fixed the grafted monomers on the surface
and kept also their relative positions fixed, cf. Fig. 1. One
might ask how the interaction between the colloids changes
when one changes the relative positioning of the grafting
points. In this section we will pursue a slightly different di-
rection and allow the anchored monomer to float freely on
the surface of the colloid. Such a situation might be experi-
mentally realized by anchoring charged chains onto an oppo-
sitely charged vesicle. Note that this model is similar to a
model introduced by Granfeldt er al. [24] to investigate the
interaction between charged colloids carrying adsorbed poly-
electrolytes. In that study the interaction potentials were de-
termined via a Monte Carlo simulation and featured typically
an attractive minima that was attributed to chain bridging.

The potential of mean force between two colloids each
having eight floating chains is depicted in Fig. 15 and is
compared to the one of the eight-tail colloid with fixed tails.
For both systems we choose the “canonical” values for all
parameters, i.e., k=040"", f=0.36, and so on. For the freely
floating tails we performed five runs of 2 X 10° time steps
with different initial conditions for each data point, allowing
us to average the potential over five curves. Remarkably the
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FIG. 16. Correlation function of bridge-forming tails for the two
type of models as a function of the LJ time 7 for the core-core
distance 90 at k=0.40"". The correlation times for the fixed chain
system is considerably larger than for floating chains.

interaction potentials of the two systems are nearly identical
with the fixed tail colloids showing a slightly deeper poten-
tial minimum.

This result is surprising since one might have expected
that the freely floating chains could take an advantage of
their mobility and move into the interaction zone between
the colloids. However, due to the mutual repulsion between
the tails there is usually not more space than for one bridge.
The slightly smaller attraction between the eight-tail colloids
might reflect the entropic penalty for the bridge-forming tail
that loses its translational degree of freedom.

Differences between fixed and floating tail anchors be-
come more prominent when looking at the correlation times
for a bridge-forming tail to stay in the bridge:

O =S (B0 P+ TP (19)

Here P(t) denotes the probability to find the ith tail of the
two complexes forming a bridge at the time ¢t and Py is the
overall probability to find a given tail in a bridge. Figure 16
presents C(7T) for the floating and the fixed chain model. The
correlation of the floating chain model decays much faster
than that of the fixed chain model. This reflects the fact that
in the floating chain model a single bridging chain can move
out of the bridging region independently from the other
chains whereas for the fixed tails this requires a rotation of
the whole colloid. Therefore in the latter case a bridging tail
stays on average longer in the interaction zone.

VIII. DISCUSSION AND CONCLUSION

We have presented a simplified model of the nucleosome
core particle, the eight-tail colloid. We were able to show
that—within this model—the interaction between eight-tail
colloids is mainly governed by the tails. In accord with the
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experiments on NCPs performed in Refs. [13-15] we find
that the underlying mechanism is tail bridging where typi-
cally one tail of one colloid bridges to the other colloid.
Other mechanisms like charge correlations show similar be-
havior like a nonmonotonic dependence of the second virial
coefficient on the salt concentration. What is, however, char-
acteristic of tail bridging is an interaction range that can be
much longer than that of the screened electrostatics. Of spe-
cial interest is the strong dependence of the interaction on the
fraction of charged tail monomers. Changes by one or two
charges on a tail have already a strong impact on the inter-
action such that the attraction can be switched on and off.

The experiments on histone tail bridging [13-15] as well
as our study focus on the interaction between NCPs. In the
cell, however, nucleosomes are connected to each other via
linker DNA which results in a chromatin fiber. This leads to
the question whether tail bridging is also important for nu-
cleosomes in such a fiber.

That this is indeed the case follows from a recent com-
puter simulation [31] where the NCP crystal structure has
been mimicked by a cylinder with 277 charge patches (ac-
counting for charged groups on the surface of the NCP) with
all the tails anchored to it. By switching on and off the
charges on the tails it was found that the tails play a crucial
role in the electrostatic nucleosome-nucleosome and
nucleosome-linker DNA interaction within that chromatin fi-
ber model—causing the stabilization of the fiber at physi-
ological salt conditions.

As a cautionary side remark we would like to note that it
is very much possible that inside chromatin fibers some of
the tails play different roles. It was, for instance, suggested
that the two H3 tails might be involved in the interaction
with the linker DNA thereby controlling the DNA entry-exit
angle at the nucleosome [32,33].

As mentioned above, tail bridging is very sensitive to the
number of charges on the tails which immediately suggest a
possible mechanism to control the interaction between nu-
cleosomes. It is in fact known that the cellular machinery is
capable of controlling the charge state of the histone tails via
the acetylation (the “discharging”) and deacetylation (the
“charging”) of its lysine groups [3]. Active, acetylated re-
gions in chromatin are more open, inactive, deacetylated re-
gions tend to condense locally and on larger scales as well
[34]. The role of acetylation for the genetic expression has
been recently demonstrated via in vivo experiments [35] on
yeast strains that contained mutated H4 tails where the
lysines where replaced by arginines that cannot be neutral-
ized. The gene expression of these mutants had been
screened for all possible combinations and it was observed
that most lysines acted as “charge counters,” i.e., the more
mutations had been introduced the stronger were the changes
in gene expressions. Only one of the four lysine residues in
the H4 tail showed a very specific response, presumably re-
cruiting special modification-specific proteins that in turn,
e.g., silence a whole region of chromatin. On the other hand,
mutations on the other three residues showed an unspecific,
cumulative effect. Of interest to our study are especially
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clustered chromosomal regions where genetic activity is
down-regulated with increasing charge numbers on the tails.
This might reflect condensation of the chromatin fibers due
to enhanced nucleosomal attraction via tail bridging in that
regions.
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