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ABSTRACT: We give a simple scaling picture for dilute and semidilute solutions of flexible polyelectrolytes
including counterion condensation. It is shown that below a critical temperature a fraction of the
counterions condenses on the chain. This leads to a renormalization of the total charge of the macroions
as well as to a condensation-induced intrachain attraction resulting in a shrinkage of the chain. The
paper extends the scaling picture of Schiessel and Pincus [Macromolecules 1998, 31, 7953] for dilute
solutions without extra salt to higher ionic strengths and higher chain concentrations. The diagram of
states for the different cases is presented.

1. Introduction

Scaling approaches to polyelectrolytes mostly focus on
the case when the interaction of the macroions with the
oppositely charged counterions can be neglected.1-3

However, many synthetic and biological macroions
(sulfonated polystyrene (PSS), DNA, ...) show strong
electrostatic interactions between the chains and its
counterions, and many numerical studies were devoted
to this regime.4-6 Manning condensation, first developed
for the case of a single, infinitely long, charged, rigid
rod,7 is basic to the understanding of these systems:
Counterions condense on the rod so long as the electro-
static attraction with the rod overwhelmes their trans-
lational entropy. The rigid rod picture can describe the
behavior of chains with a long bare persistence length
lP, like DNA (lP ≈ 500 Å), but is not suitable for
intrinsically flexible chains such as PSS (lP ≈ 10 Å). A
scaling theory for this case is therefore desireable.

In ref 8 Schiessel and Pincus provided a scaling
picture in terms of thermal blobs, focusing on the case
of a dilute solution of macroions and no addional salt.
It was shown that, with an increasing strength of the
electrostatic interaction, counterion condensation sets
in and chains begin to shrink. This contradicts single
chain theories that predict a stretching of the chain with
increasing strength of the interaction,1-3 a picture that
is only valid below the counterion-condensation thresh-
old.

There are several theoretical approaches as well as
computer simulations in which this effect is discussed.
González-Mozuelos and Olvera de la Cruz9 showed by
minimizing the free energy of such a system that the
macroions are stretched at higher temperatures and
collapsed at low temperatures. Using a similar approach
Brilliantov et al.10 predicted numerically a first-order
transition to a collapsed state at lower temperatures.
The nonmonotonic dependence of the chain size on the
strength of the electrostatic interaction was also found
in MD-simulation of dilute solutions of highly charged
chains with monovalent counterions by Stevens and
Kremer4 as well as by Winkler et al.5 Most importantly,

it is experimentally known that highly charged poly-
electrolytes precipitate when one adds salt.11 Further-
more, we note that counterion condensation may even
induce a collapse of stiff polyelectrolytes, as it was
recently shown theoretically.12

The present paper studies the behavior of polyelec-
trolyte solutions at different ionic strengths and differ-
ent chain concentrations. In the following section, we
review the case of a dilute solution of chains without
added salt, as was considered in ref 8. Dilute solutions
with a higher salinity are discussed in section 3. Section
4 is devoted to the case of entangled chains (semidilute
solutions). Finally, we give a conclusion in section 5.

2. Dilute Solution without Salt
In this section, we briefly review the phase diagram

of dilute solutions of perfectly flexible polyelectrolytes
in the absence of excess ions (no added salt) as was
presented in ref 8; for a more detailed discussion, we
refer the reader to this reference. We consider chains
consisting of N monomers (N . 1) of size b at a
monomer concentration c far below the overlap thresh-
old. The fraction of charged monomers is denoted by f
e 1 so that the total charge per chain is Z ) fN (in units
of the electronic charge e). Electroneutrality requires a
finite concentration cf of counterions (we assume here
monovalent ions carrying the charge -e). The phase
diagram of this system as a function of solvent quality
and temperature is shown in Figure 1; the different
scaling relations are given in Table 1. We study first
the behavior of the chains in a Θ solvent where the
excluded volume υ of the monomers vanishes, υ ) 0,
starting from high temperatures and discussing the
different states of the chain that occur with decreasing
temperature. Following the same procedure, we will
review then the cases where the solvent is good, υ > 0,
and poor, υ < 0.

Θ Solvent, High-Temperature Limit (Regime 1
in Figure 1). At very high temperatures the electro-
static energy of the chain, e2Z2/εL (ε, dielectric constant
of the solvent; L, chain size), is smaller than the thermal
energy T (temperature in units of the Boltzmann
constant kB) and the chain assumes Gaussian chain
statistics, L = bN1/2. Introducing the Bjerrum length lB
) e2/εT, we can rewrite the condition for the high-T limit
as lB

-1 > f 2N3/2/b.
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Θ Solvent, Stretched Chains without Counte-
rion Condensation (Regime 4 in Figure 1). For
smaller values of lB

-1 the repulsion between the mono-
mers comes into play. The chain conformation is deter-
mined by the competition between the chain entropy
and the electrostatic repulsion of the charged monomers.
For large length scales, electrostatics dominates and
leads to a rodlike shape, while for small scales entropy
dictates Gaussian statistics. The resulting blob picture1,3

consists of a string of electrostatic blobs of size êel with
gel monomers. êel and gel can be determined from the
condition that the electrostatic energy per blob is of the
order T, i.e., (fgel)2lB/êel = 1. Each blob obeys Gaussian
chain statistics, i.e., êel = bgel

1/2. Thus, êel = b4/3/lB
1/3f 2/3

and the total length L = (N/gel)êel of the chain follows:
1,3

Θ Solvent, Stretched Chains with Counterion
Condensation (Regime 7 in Figure 1). The picture
described above breaks down at lower temperatures
(smaller lB

-1) when the electrostatic interaction -e2Z/
εL between a counterion and a nearby chain13 exceeds
its translational entropy -T ln(φ) (φ denotes the volume
fraction of the counterions of volume υc, i.e. φ = cυcf).
We treat the ln(φ) term as a constant, ln(φ) ) -k. For
lB

-1 < f 1/2/k3/2b, a fraction of the counterions will
condense on the macroion and effectively reduce the

total charge to a value Z̃ = kL/lB < Z.14,15 To describe a
macroion with condensed counterions one can use again
the blob picture, now with an effective charge fraction
f̃ ) Z̃/N. The blob parameters êel and gel as well as f̃ are
determined by the following conditions: (f̃gel)2lB/êel =
1, êel = bgel

1/2, and f̃ = kL/lBN = kêel/lBgel. One finds êel
= lB/k2 and8

Equation 2 shows that the chain begins to shrink while
the blobs grow with decreasing temperature as soon as
counterion condensation sets in, an effect that follows
from the decrease of the effective charge fraction. At
very low temperatures, lB

-1 < 1/k2bN1/2, Z̃ is so small
that the chain conformation is again governed by the
configurational entropy, L = bN1/2 (regime 10 in Figure
1). We thus find a nonmonotonic dependence of the size
of the polyelectrolyte on lB. This agrees with computer
simulations of dilute solutions of flexible polyelectrolyte
chains4,5 where the typical size of the chains are
monitored as a function of lB. The chains show clearly
a shrinking as soon as counterion condensation sets in.
They shrink, however, to a collapsed state with L ∝ N1/3

that is smaller than the high-T limit. This effect follows
from the fluctuation-induced electrostatic attraction
between monomers induced by the condensed counte-
rions that effectively change the solvent quality as
discussed at the end of this section.

Good Solvent (Regimes 2, 5, 8, and 11 in Figure
1). At high temperatures the electrostatic interaction
can be neglected and the chain is swollen due to
excluded volume effects.16 The chain constitutes a self-
avoiding walk of ideal thermal blobs of size êT = b4/υ.
Thus, L = aN3/5 with a ) (υb2)1/5. When υ < b3N-1/2,
one has êT >bN1/2 and the whole chain obeys Gaussian
statistics, regime 1 in Figure 1. The chain begins to
stretch when lB

-1 < f 2N7/5/a and can be described as a
linear string of swollen electrostatic blobs (diameter êel
= a10/7/lB

3/7f 6/7) of length2,3

Regime 5 is present as long as êel > êT, i.e., as long as
lB

-1 > f 2b8/υ3. For smaller values of lB
-1 each electro-

static blob obeys ideal chain statistics; i.e., one enters
regimes 4 and 7. At lB

-1 = υ/k2b4 the short-length
repulsion leads again to a swelling of the blobs, regime
8. One finds êel = lB/k2 (as in the Θ-case) and8

The chain shrinks with decreasing lB
-1 and reaches at

lB
-1 = 1/k2aN3/5 the unperturbed value L = aN3/5 (regime

11).
Poor Solvent (Regimes 3, 6, and 9 in Figure 1).

For the case of a macroion in an athermal poor solvent
with υ < 0, one encountersssimilar to the good solvent
cases thermal blobs of size êT = b4/|υ|. The short-range
attraction induces the structure of a molten globule with
densely packed thermal blobs of size L = b2N1/3/|υ|1/3.
Missing neighboring blobs lead to a surface tension γ
= T/êT

2; the surface energy of the globule is then γL2.
This picture remains valid as long as the surface energy
is larger than the electrostatic energy (efN)2/εL, i.e., as

Figure 1. Phase diagram of a dilute solution of polyelectro-
lytes as a function of the solvent quality and the inverse
Bjerrum length lB

-1 = εT/e2 (as presented in ref 8). For each
regime the typical conformation of the macroion is depicted
using the concept of blobs. The different length scales are
summarized in Table 1. The dashed-dotted line υ ) 0
corresponds to a Θ solvent, υ > 0 to a good solvent, and υ < 0
to a poor solvent. The expressions for the scaling boundaries
between the different regimes are given. This simple scaling
theory does not account for fluctuation-induced electrostatic
interactions that leads effectively to poorer solvent conditions
in the case of condensed counterions (represented by the black
dots). Lines A and B show qualitatively the actual phase
boundaries between the regimes 7, 8, and 9 when one accounts
for this effect (see text).

L = f 2/3b2/3lB
1/3N (1)

L =
k2b2N

lB
(2)

L = f 4/7a5/7lB
2/7N (3)

L =
k4/3a5/3N

lB
2/3

(4)

5674 Schiessel Macromolecules, Vol. 32, No. 17, 1999



long as lB
-1 = f 2b2N/|υ|. At this value a Rayleigh-type

instability17 occurs, the globule breaks up and the chain
stretches out. A simple description of this state using
the concept of electrostatic blobs goes back to Khokhlov.18

The size of the blobs is determined by the competition
between electrostatic repulsion and surface tension, i.e.,
(fgel)2lB/êel = êel

2/êT
2. Together with poor solvent statis-

tics êel = b2gel
1/3/|υ|1/3 one finds êel = b4/3/lB

1/3f 2/3 and

By decreasing lB
-1 one enters at lB

-1 = f 2b8/|υ| regime
4 where the electrostatic blobs obey Gaussian statistics
and at lB

-1 ) f 1/2/k3/2b regime 7 (ideal blobs with
condensed counterions). In regime 7 one has êel = lB/k2.
At lB

-1 = |υ|/k2b4 where êel = êT the statistics within
the electrostatic blobs begins to change. For smaller
values of lB

-1, we may tentatively use again the picture
of collapsed electrostatic blobs, now with condensed
counterions. By equating the electrostatic energy and
the surface tension, we find êel = k2b8/υ2lB and L =
|υ|3lB

2N/k4b10. This argument leads to the counterintui-
tive prediction that the chain stretches with decreasing
lB

-1. This result is not consistent: starting at the
crossover lB

-1 = |υ|/k2b4 (êel = êT) and decreasing lB
-1,

the above given argument predicts êel ∝ lB
-1 and thus

êel < êT as soon as the chain begins to stretch; i.e., the
electrostatic blobs do not obey poor solvent statistics as
assumed in this picture. Indeed, the more detailed study
in ref 8 suggests that in regime 9 the globular state with
L = b2N1/3/|υ|1/3 is the state of lowest free energy. The
transition from regime 7 to 9 (and also from regime 6
to 9) occurs as a first-order collapse enhanced by an
avalanche-type counterion condensation as already sug-
gested by Khokhlov.18 A similar mechanism for poly-
electrolytes with an annealed charge distribution in a
poor solvent was discussed by Raphael and Joanny.19

By crossing from regime 7 to 9 the renormalized charge
decreases rapidly from Z̃ ) k-1(υ/b3)2N to the much
lower value Z̃ = k-1(|υ|/b3)2/3N1/3. In our considerations
of the poor solvent case we assumed that the chain
assumes a cylindrical shape of diameter êel. Dobrynin,
Rubinstein and Obukhov showed in ref 20 that the
macroion can lower its free energy further by stretching

into a necklace structure with beads of size êel connected
by strings of diameter êT. This only modifies the chain
structure within regime 6. The phase boundaries of this
regime are not changed, and it is also predicted that
the necklace collapses as soon as counterion condensa-
tion sets in.21 Note that recent computer simulations
report necklace chains with condensed counterions,6 a
result that is not consistent with the scaling picture.
This may be explained by the strong hydrophobicity and/
or the short chain lengths (N ) 94, f ) 1/3) used in the
simulations; simulations with longer chains and smaller
υ are in progress.23

Effect of the Counterion-Induced Attraction. Up
to now we assumed that the only effect of counterion
condensation is the renormalization of the total charge.
However, as soon as there are condensed counterions
on a macroion they induce attractions between mono-
mers. In ref 8 we accounted for this effect by shifting to
poorer solvent conditions, i.e., υ′ = υ - ∆υ. ∆υ is
calculated by assuming that condensed counterions form
dipoles with oppositely charged monomers. Accounting
for the angle-averaged potentials between the dipoles
as well as between dipoles and monopols (monomers
with no compensating counterion) one finds8

We note that eq 6 may have a more complicated form
that depends on the ratio of different microscopic length
scales as discussed in ref 8. Here we assume the simple
case of the presence of only a single microscopic length
scale, namely the monomer size b. Assume now that the
chains are in regime 7 near the line lB

-1 ) f 1/2/k3/2b,
i.e., when only a small amount of counterions is con-
densed. Then f - f̃ = 0 and υ′ = υ. By lowering lB

-1,
more and more counterions condense and therefore υ′
decreases. Finally, the attraction between the monomers
becomes so strong that the thermal blobs êT = b4/|υ′|
becomes of the same order as the electrostatic blob size
êel = lB/k2. Equating êT and êel one finds

The corresponding line is depicted in the phase diagram,

Table 1. Characteristic Length Scales in Solutions of Polyelectrolytes: Electrostatic Blob Size êel, Mesh Size êm (for the
Case of Overlapping Chains), Electrostatic Persistence Length le, and Total Size L of a Single Chaina

regime êel êm le L

1/10 bN1/2

2/11 aN3/5

3/9 b2N1/3/|υ|1/3

4 b4/3/lB
1/3f 2/3 f 2/3b2/3lB

1/3N
4s b4/3/lB

1/3f 2/3 f 2/3/b4/3lB
2/3cs f 8/15b2/15N3/5/lB

1/30 cs
3/10

4o b4/3/lB
1/3f 2/3 1/c1/2f 1/3b1/3lB

1/6 1/c1/2f 1/3b1/3lB
1/6 f 1/6b1/6lB

1/12N1/2/c1/4

5 a10/7/lB
3/7f 6/7 f 4/7a5/7lB

2/7N
5s a10/7/lB

3/7f 6/7 f 6/7/cslB
4/7a10/7 f 18/35a1/7N3/5/cs

3/10 lB
3/70

5o a10/7/lB
3/7f 6/7 1/c1/2f 2/7a5/14lB

1/7 1/c1/2f 2/7a5/14lB
1/7 f 1/7a5/28lB

1/14N1/2/c1/4

6 b4/3/lB
1/3f 2/3 f 4/3b10/3lB

2/3N/|υ|
6s b4/3/lB

1/3f 2/3 f 2/3/cslB
2/3b4/3 f 14/15b26/15lB

1/6N3/5/cs
3/10|υ|3/5

6o b4/3/lB
1/3f 2/3 |υ|1/2/c1/2f 2/3b5/3lB

1/3 |υ|1/2/c1/2f 2/3b5/3lB
1/3 f 1/3b5/6lB

1/6N1/2/|υ|1/4c1/4

7 lB/k2 k2b2N/lB
7s lB/k′2 k′2/cslB

2 k′8/5b6/5N3/5/lB
11/10 cs

3/10

7o lB/k2 lB
1/2/kc1/2b lB

1/2/kc1/2b k1/2b1/2N1/2/c1/4lB
1/4

8 lB/k2 k4/3a5/3N/lB
2/3

8s lB/k′2 k′2/cslB
2 k′6/5aN3/5/cs

3/10 lB
9/10

8o lB/k2 lB
1/3/k2/3c1/2a5/6 lB

1/3/k2/3c1/2a5/6 k1/3a5/12N1/2/c1/4lB
1/6

a The different regimes 1 to 11 are depicted in the phase diagrams, Figures 1-3. The indices denote modifications of the salt-free
dilute case by screening, s, and chain overlap, o.

L =
f 4/3b10/3lB

2/3N
|υ| (5)

υ′ = υ - (f - f̃)flB
2b (6)

-υ =
b4k2

lB
+ fk3b3 - f 2blB

2 (7)
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Figure 1, as the dashed line A. The line starts at the
point where regimes 4, 6, 7, and 9 come together. The
more detailed study in ref 8 shows that the exact shape
of this line (for instance, the lB

-1 value where it crosses
the υ ) 0 line) depends on microscopic properties. In
any case, even for more refined approaches we expect
that the qualitative shape of line A is captured by eq 7.
When one crosses line A, the poor solvent statistics
becomes important and, as discussed above, the chain
collapses in a first-order type fashion into a globular
state with L ∝ N1/3. A discussion of the collapsed state
is given in ref 8. Note further that regime 8 becomes
strongly modified. One has swollen electrostatic blobs
in the small band between the line lB

-1 ) f 3/5/k7/5a and
line B. At this line the sizes êel = lB/k2 and êT = b4/|υ′|
become comparable which leads to υ = b4k2/lB - fk3b3

+ f 2blB
2.

3. Dilute Solution at Higher Ionic Strength

Here we study the effect of adding salt to a dilute
solution of polyelectrolytes. In this case the electrostatic
interaction between the charged monomers becomes
short-ranged with a Debye screening length κ-1 =
cs

-1/2 lB
-1/2 (where cs denotes the concentration of salt).

Before we calculate the diagram of states, Figure 2, a
word of caution has to be added. It is clear that in the
case κ-1 < L screening between monomers that are farer
apart in space than κ-1 comes into play; it is therefore
tempting to assume that in this case the chain behaves
as a wormlike chain of electrostatic blobs with an
electrostatic persistence length le = κ-1. This is indeed
the assumption of the earlier works,2,3 and it is sup-
ported by variational approaches.3 le may, however, be
much larger than κ-1, a fact that is well-known for stiff
polyelectrolytes with a sufficiently long bare persistence
length lP so that lP . b2/(f 2lB) (Odijk-Skolnick-Fixman
(OSF) theory, see refs 3, 24, and 25). In this case it
follows from a perturbation calculation that the chain

has an effective persistence length lP + le with le given
by le ) f 2lB/4b2κ2 (see remark 26 for a simple “scaling”
derivation of this result). Khokhlov and Katchaturian28

(KK) have proposed that this effects also carries over
to flexible chains where the electrostatic blobs play the
role of the monomers of a coarse-grained wormlike
chain. Thus, the values of b and f 2lB that occur in the
OSF-theory have to be replaced by the electrostatic blob
size êel and by f 2gel

2lB. This leads to the following
electrostatic persistence length:

Even though computer simulations seem to indicate a
more involved picture,32 very recent careful theoretical
studies strongly support this picture (cf. refs 29-31).
We will therefore employ the KK-procedure in this
section. As in the previous section we will first study
the case of a Θ solvent and discuss the behavior of the
system with decreasing value of lB

-1.
Θ Solvent, Higher Temperatures (Regime 1 and

4 in Figure 2). At sufficiently large values of lB
-1 the

persistence length is larger than the chain size, le > L,
and the screening is unimportant. As discussed in the
previous section the chain size is then given by L = bN1/2

in regime 1 and by eq 1 in regime 4 (cf. Figure 2). In
this regime one has êel = b4/3/lB

1/3f 2/3, which implies an
electrostatic persistence length le = f 2/3lB

1/3κ-2/b4/3 = f 2/3/
b4/3lB

2/3cs. At lB
-1 = csb2N, one has le = L and screening

comes into play.
Θ Solvent, Wormlike Chain without Counterion

Condensation (Regime 4s in Figure 2). In this
regime the chain can be envisaged as a semiflexible
chain of electrostatic blobs with a finite persistence
length le. The electrostatic blobs are given by a local
argument, namely the interplay of the (unscreened)
electrostatic repulsion and the thermal fluctuation, and
their size is therefore identical to that of regime 4, i.e.,
êel = b4/3/lB

1/3f 2/3. Thus, the electrostatic persistence
length le is still given by le = f 2/3/b4/3lB

2/3cs. The global
configuration of such a chain can be calculated as follows
(similar to the argument given by Odijk and Houwaart
in ref 33): Due to the screened electrostatic repulsion
the chain behaves effectively as a rescaled flexible chain
with highly anisotropic, e.g., cylindrical monomers of
length le and diameter κ-1. This leads to a second virial
coefficient for the segment-segment interaction of the
form υ̃ = le

2κ-1. One has Ñ = Lc/le segments where Lc is
the ′′contour′′ length of the chain given by eq 1. The size
of the chain follows from L = (υ̃le

2)1/5Ñ3/5 = Lc
3/5/

cs
3/10 lB

3/10 êel
1/5, which leads to

As expected, the chain shrinks with increasing salt
concentration. We call this regime 4s, the index s
denoting screening.

Θ Solvent, Wormlike Chain with Counterion
Condensation (Regime 7s in Figure 2). Consider a
counterion that is near to a macroion so that the
shortest distance to the macroion is smaller than κ-1.
Due to screening the counterion can see only a part of
the chain of length κ-1 < le. Therefore, the macroion acts
as a charged rod of length κ-1. The electrical interaction
with the macroion is then given by e2ZD/εκ-1 (up to
logarithmic corrections13); ZD denotes the number of

Figure 2. Diagram of states of a dilute solution of polyelec-
trolytes at higher ionic strength as a function of υ and lB

-1 =
εT/e2. See also Table 1. For lB

-1 < cs
1/3 saturation effects come

into play (shaded area).

le = f 2gel
2lB/êel

2
κ

2 ) 1/κ2êel (8)

L =
f 8/15b2/15N3/5

lB
1/30 cs

3/10
(9)
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charges on the chain section of length κ-1. Counterions
will condense and renormalize ZD to the value Z̃D =
k′κ-1/lB; cf. the previous section. Here, k′ ) -ln(φ) )
-ln(csυc) depends logarithmically on the salt concentra-
tion. The charge fraction is now given by f̃ = k′κ-1/gDlB,
where gD denotes the number of monomers of the chain
section under consideration. This together with (f̃gel)2lB/
êel = 1, êel = bgel

1/2 and κ-1 = (gD/gel)êel leads to êel =
lB/k′2, i.e., to the same blob size as in the salt-free case
(up to logarithmic corrections). Now using the KK-
scheme (using f̃ instead of f) we find again an electro-
static persistence length le which is given by eq 8. Thus,
le = k′2/cslB

2. This leads to the chain size

where Lc is given by eq 2.
Good Solvent (Regimes 2, 5, 5s, and 8s in Figure

2). At sufficiently high temperatures one has le > L and
the screening can be neglected; cf. regimes 2 and 5 in
Figure 2. When lB

-1 = (cs
7a15N7/f 2)1/6 the size L of the

stretched macroion (cf. eq 3) is of the order of the
electrostatic persistence length le = f 6/7/cslB

4/7a10/7. For
smaller values the size is given by L = Lc

3/5/
cs

3/10 lB
3/10 êel

1/5. Below the condensation threshold, re-
gime 5s, one finds from eq 3

In the case of counterion condensation, regime 8s, the
chain length obeys

Regime 5s and 8s have been studied in an MD-simula-
tion in ref 34 using an explicit treatment of the salt ions.
Qualitative features such as the shrinkage of chains
with increasing salt concentration are in accordance
with the scaling picture but the explicit comparison of
the scaling exponents is not possible since the chains
are too short.

Poor Solvent (Regimes 3, 6, 6s, and 9 in Figure
2). For high temperatures where screening is unimpor-
tant one has collapsed globules of size L = b2N1/3/|υ|1/3,
regime 3 in Figure 2, and stretched chains of length L
given by eq 5, regime 6. Screening comes into play when
le < L with le = f 2/3/cslB

2/3b4/3 (same as in the Θ case),
i.e. for lB

-1 < (cs
3f 2b14N3/|υ|3)1/4. Using again L = Lc

3/5/
cs

3/10 lB
3/10 êel

1/5, where Lc is now given by eq 5, we find

In the poor solvent case with counterion condensation,
regime 9, we may tentatively use the concept of elec-
trostatic blobs with condensed ions. Again, as in the
previous section, we end up with an inconsistency, since
a stretching of the total length (here the contour length)
is predicted. This indicates that the chain collapses in
a first-order transition into the collapsed state of size L
= b2N1/3/|υ|1/3. Figure 2 also depicts the lines A and B
that follow from the counterion-induced shift of the

phases toward poorer solvent conditions, as discussed
at the end of the previous section. Line A is still given
by eq 7 with k replaced by k′.

Finally, we note that the Debye-Hückel picture will
only hold as the typical interaction between salt ions is
smaller than T, i.e., as long as lB

-1 > cs
1/3 or equivalently

κ-1 > lB. This condition also happens to coincide with
the condition êel < κ-1 that has to be imposed on regime
7s and 8s. For lB

-1 < cs
1/3, the system saturates; the

resulting phase transition is beyond the scope of this
paper.

4. Semidilute Solutions

Until now, we considered dilute solutions where the
different chains are well separated from each other. In
this section, we will focus on intermediate macroion
concentrations where the chains are well separated at
high temperatures but begin to overlap more and more
with decreasing temperatures due to the stretching of
the chains. We give a thorough discussion of the salt-
free case (cf. Figure 3) and sketch the semidilute case
at a higher salinity only briefly at the end of this section.
We follow the lines of ref 1, where the scaling properties
of semidilute solution of polyelectrolytes have been
derived (without counterion condensation); see also refs
2 and 36.

Θ Solvent, below the Overlap Threshold at High
Temperatures (Regimes 1 and 4 in Figure 3).
Chains at high temperatures in dilute solutions form
random walks with L = bN1/2 (cf. Section 2). If one
increases the monomer concentration c, the chains will
begin to overlap at c ) c* where the overlap concentra-
tion is given by c* = N/L3 = b-3N-1/2. In the following,
we assume that c < c*; i.e., the concentration is so small
that the Gaussian coils do not overlap (regime 1 in
Figure 3). However, we assume that the concentration
is high enough that the chains overlap considerably
when they are in the strongly stretched state. In regime
4 where the size is given by L = f 2/3b2/3lB

1/3N, cf. eq 1,

Figure 3. Phase diagram of a semidilute solution of macro-
ions without extra salt as a function of υ and lB

-1 = εT/e2. See
also Table 1.

L =
Lc

3/5

cs
3/10 lB

3/10êel
1/5

=
k′8/5b6/5N3/5

lB
11/10 cs

3/10
(10)

L =
f 18/35a1/7N3/5

cs
3/10 lB

3/70
(11)

L =
k′6/5aN3/5

cs
3/10 lB

9/10
(12)

L =
f 14/15b26/15lB

1/6N3/5

cs
3/10|υ|3/5

(13)
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the chain stretches with decreasing lB
-1 which is ac-

companied by a lowering of c* = N/L3 = 1/f 2b2lBN2. At
lB

-1 = f 2b2cN2 one reaches c ) c*, i.e., the chains begin
to overlap.

Θ Solvent, Overlapping Chains without Con-
densed Counterions (Regime 4o in Figure 3).
Beyond the overlap threshold, c > c*, the overlapping
chains form a transient network with a typical mesh
size êm (the notation 4o denotes regime 4 with overlap-
ping chains). The scaling form of êm follows from two
requirements: (i) At the overlap threshold, c ) c*, êm
equals the chain size of noninterpenetrating chains, eq
1. (ii) For c > c*, the mesh size is independent of the
degree of polymerization N, êm ∝ N0. This leads to the
scaling form êm = L(c*/c)1/2. From this it follows that
the mesh size obeys êm = 1/c1/2f 1/3b1/3lB

1/6. Within the
mesh size one finds, from the picture of electrostatic
blobs, êm = f 2/3b2/3lB

1/3gm (cf. eq 1) where gm denotes the
number of monomers within the mesh size. It is gener-
ally believed that on larger length scales each chain will
have many deflections that are induced by the presence
of other chains; the distance between deflections will
be of the order of the mesh size (see refs 3 and 35).
Together with the Flory screening theorem,16 this means
that the configuration of a given chain is that of a
random walk of step size êm, i.e., L = êm(N/gm)1/2 which
leads to1

In this argument, we implicitly assumed that the
screening from the counterions can be neglected for
length scales smaller than the mesh size, i.e. êm < κ-1

= 1/c1/2f 1/2lB
1/2. This translates into the condition lB

-1

> f 1/2/b, which coincides with the condition that the
interaction between counterions and chains can be
neglected, lB

-1 > f 1/2/k3/2b. For smaller values of lB
-1,

one has counterion condensation.
Θ Solvent, Overlapping Chains with Condensed

Counterions (Regime 7o in Figure 3). For lB
-1 < f 1/2/

k3/2b, some counterions condense. From eq 2 we find the
overlap threshold c* = N/L3 = lB

3/k6b6N2 and the mesh
size êm = L(c*/c)1/2 = lB

1/2/c1/2kb. Using the picture of
electrostatic blobs with condensed counterions, one
finds, as in the dilute case (cf. sections 2 and 3), êel =
lB/k2. From êm = k2b2gm/lB (cf. eq 2) and L = êm(N/gm)1/2,
one obtains

It is important to check if this argument is consistent.
The Debye screening length that follows from the
presence of free counterions is given by κ-1 = 1/c1/2f̃1/2lB

1/2

where the fraction of free counterions is given by f̃ =
kêm/gmlB = k3b2/lB

2. This leads to κ-1 = lB
1/2/c1/2k3/2b,

which is of the same order as the mesh size; i.e.
counterion condensation pins the screening length to the
mesh size. It is therefore consistent to assume that the
persistence length of the chains is given by êm.

Θ Solvent, below the Overlap Threshold at Low
Temperatures (Regimes 7 and 10 in Figure 3). In
regime 7o the chains shrinks with a decreasing value
of lB

-1 as L ∝ lB
-1/4, cf. eq 15. At lB

-1 = 1/c1/3k2b2N2/3

one leaves the overlap regime again and reenters a

dilute regime, namely regime 7 where the chain size is
given by eq 2, followed by regime 10.

Good Solvent, below the Overlap Threshold at
High Temperatures (Regime 2 and 5 in Figure 3).
At high temperatures the chains do not overlap so that
one has isolated swollen coils with L = aN3/5 (regime 2)
and stretched configurations with L given by eq 3
(regime 5). The chains begin to overlap at lB

-1 =
f 2c7/6a15/6N7/3.

Good Solvent, Overlapping Chains without Con-
densed Counterions (Regime 5o in Figure 3). When
lB

-1 < f 2c7/6a15/6N7/3 the chains overlap. The overlap
concentration c* = 1/f 12/7a15/7lB

6/7N2 predicts for the
mesh size êm = L(c*/c)1/2 = 1/c1/2f 2/7a5/14lB

1/7. The number
of monomers gm within this correlation length is given
by the relation êm = f 4/7a5/7lB

2/7gm; cf. eq 3. Excluded
volume and electrostatics is screened at length scales
larger than êm so that L = êm(N/gm)1/2. This leads to2,36

Note the weak dependencies of L on υ and lB.
Good Solvent, Overlapping Chains with Con-

densed Counterions (Regime 8o in Figure 3). At
lB

-1 = f 1/2/k3/2b, counterion condensation sets in. From
eq 4, one finds for the overlap threshold c* = lB

2/k4a5N2,
and for the mesh size, êm = lB

1/3/k2/3a5/6c1/2. It was indeed
observed for a corresponding experimental system that
êm ∝ c-1/2f 0, the f 0 dependence suggests counterion
condensation.37,38 Furthermore, it was shown for the
same system38 that the osmotic pressure (that is gov-
erned by the presence of free counterions) is indepen-
dent of f, clearly indicating the phenomenon of counte-
rion condensation. Using êm = k4/3a5/3gm/lB

2/3 (cf. eq 4)
we arrive at

The chains shrink with decreasing lB
-1, L ∝ lB

-1/6, and
at lB

-1 = 1/k2a5/2c1/2N one enters the dilute regime 8.
Poor Solvent, Overlapping Chains without Con-

densed Counterions (Regime 6o in Figure 3). At
high temperatures the chains do not overlap (regime 3
and 6 in Figure 3). At lB

-1 = f 2b5c1/2N/|υ|3/2 one has c )
c* where c* is given by c* = |υ|3/f 4b10lB

2N2 (using eq 5
for L). Then, in regime 6o the mesh size is given by êm
= |υ|1/2/f 2/3c1/2b5/3lB

1/3 and the chain size obeys36

For smaller values of lB
-1, we cross into the regime

where the short-range attraction between the monomers
can be neglected, i.e., where êel < êT (regimes 4o and 7o
in Figure 3).

Poor Solvent, Collapsed Chains with Condensed
Counterions (Regime 9 in Figure 3). For smaller
values of lB

-1, the chains collapse in a first-order type
fashion into a collapsed state with L = b2N1/3/|υ|1/3.
Corresponding experiments with salt-free PSS-solu-
tions37,39 are, up to now, not well understood for three
reasons: (i) The osmotic pressure Π shows a strong f
dependence (Π increases roughly linearly with f). (ii)
The position of the characteristic peak q* scales roughly

L =
f 1/6b1/6lB

1/12N1/2

c1/4
(14)

L =
k1/2b1/2N1/2

c1/4lB
1/4

(15)

L =
f 1/7(υb2)1/28lB

1/14N1/2

c1/4
(16)

L =
k1/3a5/12N1/2

c1/4lB
1/6

(17)

L =
f 1/3b5/6lB

1/6N1/2

|υ|1/4c1/4
(18)
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as f 0.9. (iii) q* gradually changes from a c1/2 to a c1/3

dependence when f is decreased. Since in all these
systems counterion condensation is expected, these
observations may indicate aggregation of chains. With
decreasing f, the number of ionic groups per chain goes
down so that the effective hydrophobicity of the chain
increases, resulting in larger aggregates with more
condensed counterions per chain. The average distance
between aggregates may show a c-1/3 dependence that
is reflected in the position of the characteristic peak.

Finally, a similar scenario is expected for Θ and good
solvents at sufficiently low temperatures, cf. line A and
B in Figure 3.

Semidilute Solutions at Higher Ionic Strength.
We give here a few short remarks on the most involved
case of a semidilute solution of polyelectrolytes with
added salt. In this case one has to keep track of six
different length scales: the blob size êT induced by the
short-range interaction between the monomers, the
electrostatic blob size êel, the mesh size êm of the
network, the screening length κ-1, the electrostatic
persistence length le, and the total size L of the chain.
As a consequence the complete phase diagram for this
situation is quite involved. For low ionic strenth so that
the screening length is larger than the mesh size, i.e.,
κ-1 > êm, one has still the situation discussed above: A
given chain forms a straight line of electrostatic blobs
within each mesh but is deflected when it “crosses” other
chains. This leads to a persistence length of the order
of the mesh size. However, as soon as κ-1 < êm, the
interaction between different chains may be screened
since the typical distance between crossing chains is on
the order of êm. If one inserts a test chain into this
solution, it will only be deflected if it crosses other chains
within a distance smaller than κ-1. Using simple geo-
metrical arguments it can be shown that this occurs
typically every distance êm

2/κ-1 along the chain. This
suggests a modified electrostatic persistence length l̃e
with êm < l̃e = êm

2/κ-1 < le, a result that was obtained
in ref 35 using an energy balance argument. For even
higher ionic strength so that κ-1 < êm

2/le, the presence
of other chains perturbs the electrostatic persistence
length, eq 8, only slighly (cf. section VI. C. in ref 3).

V. Conclusion

We have presented a scaling picture for solutions of
flexible polyelectrolytes for a wide range of chain
concentration and ionic strength. This is an extension
of the scaling theory for polyelectrolytes to include
charge renormalization. Remarkably, we find that for
all ionic strengths and chain concentrations the elec-
trostatic blob size, which determines the effective
“contour length” of the chain remains constant. How-
ever, the configuration of the chain does depend on c
and cs. At the largest length scales, one finds stretched
chains in the dilute salt-free case; at higher ionic
strengths the chains assume configurations of self-
avoiding walks, and in the case of interpenetrating
chains, Gaussian statistics governs the behavior. De-
pending on the ratios of different length scales (total
chain size, thermal length due to short-range attraction/
repulsion, electrostatic blob length, electrostatic persis-
tence length, mesh size), one encounters different chain
statistics for smaller portions of the chains.

An interesting aspect of these systems is the non-
monotonic dependence of the contour length of the chain
on temperature. Starting from high tempertures, the

chain begins to stretch with decreasing temperature.
Then, as soon as counterion condensation sets in, one
finds a shrinkage of the chains. In our scaling picture,
this effect can be understood as an effect of charge
renormalization together with a change of the solvent
quality to poorer conditions. For semidilute solutions
this leads to the following reentrant behavior: Starting
at, e.g., very high temperatures where the chains are
not stretched and may form a dilute solution, one enters
semidilute conditions at intermediate values of the
temperature. Finally, if the temperature is decreased
sufficiently, counterion condensation will cause a shrink-
age of the chain, and one reenters the dilute case.

Finally, we note that there are several open questions
in this problem. A more rigorous approach to the role
of the charge fluctuations along the chain (in the case
of condensed counterions) is still missing. The behavior
of polyelectrolytes in poor solvents needs a closer
inspection by means of experiments and computer
simulations. Up to now, experimental facts37,39 and
simulations results6 do not lead to a conclusive picture.
In any case we hope that the presented scaling picture
may be a guide for further experiments and computer
simulations.
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