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ABSTRACT In this work we introduce mechanical networks which highlight the relation between 
viscoelastic and structural properties of chemical systems at  the sol-gel transition. Cross-linking polymers 
a t  the gel point show in general a power law behavior of the complex modulus, ie . ,  G*(w) a (0 < a 
< l), which is related to the (constitutive) gel equation. We present a mechanical ladder model whose 
stress-strain relation obeys the gel equation with a = and which consists of an infinite number of 
springs and dashpots. Furthermore, we investigate terminated ladder arrangements which mimic pre- 
and postgel behavior. To elucidate the complex dependence of a on structural properties which one 
observes for systems near to  the gel point, we analyze mechanical fractal networks. 

1. Introduction 
In many cases relaxation processes in complex ma- 

terials show characteristic patterns; one often observes 
algebraic decay forms 

f#J(t) = t-a (1) 

with 0 < a < 1 over many decades in time. Examples 
are current distributions at  rough blocking electrodes,l 
charge-carrier transport in amorphous semiconductors,2 
the dielectric relaxation of  liquid^,^ and the attenuation 
of seismic waves.4 

Here we focus on the viscoelastic properties of systems 
of cross-linking polymers at the sol-gel transition. In 
typical experiments the material is exposed to  a har- 
monic strain excitation; i.e., one measures the complex 
(shear) modulus G*(w). At the gel point this quantity 
often obeys a power law 

G*(o) = (iw)" 

with 0 < a 1 over many decades in frequency. This 
means that there is a constant phase angle between 
stress and strain which is independent of frequency. 
Using the relation G*(w) = iwGG(t.) exp(-iwt.) dt., one 
finds for the relaxation modulus G(t)  (the response of 
the stress to  a shear jump) an algebraic decay 

(3) 

Therefore, cross-linking polymers a t  the sol-gel transi- 
tion are very good model systems for studying algebraic 
decays (eq 1). 

A widely used picture for the sol-gel transition is 
based on the percolation model which implies the 
appearance of critical  exponent^.^ Experimentally, 
however, the value of a at the gel point, a0, varies from 
material to material, mostly in the range from 0.2 to  
0.7 (see ref 6 for an overview); this fact speaks against 
a universal background for a0. We note, however, that 
special values for a0 seem to be preferred, such as a0 1; 

2/3 and a0 G V2. Thus, a0 = l/2 often appears for cross- 
linking polymers with balanced stoichiometry,7*8 whereas 
a deficiency of the cross-linker usually leads to an 
increase in Q. 
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The sol just below the gel point, the so-called pregel, 
shows also an wa behavior of the complex modulus in a 
bounded frequency range; for small frequencies (Le., for 
large times) one finds the typical liquidlike behavior. 
Also the complex modulus of the system just over the 
gel point, the so-called postgel, shows (besides the 
typical solidlike response for small frequencies) the ma 
form. Experimentally one usually finds that a de- 
creases monotonically during the gelation p r o ~ e s s , ~ - ~  so 
that a > a0 for the pregel and a < a0 for the postgel. 
Therefore, one has a complex dependence of a on the 
chemical constituents and their stoichiometry, as well 
as on the stage of the gelation process. 

Chambon and Winter7 proposed a rheological consti- 
tutive equation for the critical gel. In the context of the 
so-called fractional calculusl0J1 this equation can be 
interpreted as a fractional relaxation e q ~ a t i o n . ~  In this 
spirit Friedrich and Heymann extended in ref 9 this 
equation to describe the stress-strain relationship of 
the whole gelation process. We note that in recent years 
fractional calculus has become an important tool in the 
analysis of viscoelastic materials.12-16 The approach is, 
however, rather formal and does not relate to the 
underlying physics at the microscopic level. 

In previous w ~ r k s ~ ~ J ~  we have developed mechanical 
models which can mimic fractional relaxation equations 
(cf. also the mechanical arrangements proposed by 
Heymans and BauwenslG). We note that ladder models, 
following the pioneering work of Blizard,lg were much 
used as microscopic pictures for gels. Here we show that 
the infinite ladder model of ref 17 provides a mesoscopic 
description of the critical gel, whereas finite ladder 
systems allow one to model different gelation stages. 
Common to  all these ladder arrangements is that they 
show an wa behavior with a = l/2. Furthermore, using 
fractal networks we provide a qualitative picture of the 
dependence of a on structural properties of the system, 
by explaining the observed decrease of a in the postgel 
regime. 

2. Experimental Findings and 
Phenomenological Approaches 

The mechanical properties of the gelation process 
have been investigated for a great variety of physical 
systems (see ref 6 and references therein). Here we 
focus on end-linking reactions where the prepolymer is 
far below the entanglement limit. Oscillatory shear 
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for the critical gel, which they called the gel equation: experiments of such systems show that the complex 
moduli at the gel point exhibit a constant phase angle 
behavior (cf. eq 2). An interesting problem concerns the 
dependence of the exponent a0 on different physical and 
chemical parameters. An important class of gels are 
systems for which the chemical species (the prepolymers 
and the cross-linkers) are stoichiometrically balanced. 
Here one often finds a0 = '12, this value being rather 
insensitive to the choice of the prepolymers (poly- 
(dimethyl~iloxane)~ or polyurethane8), to the functional- 
ity f of the cross-linker (tetrasilane, f = 4;7 or triisocy- 
anate, f = 38), and to the chain length.8 On the other 
hand, a0 changes drastically, when the system is stoi- 
chiometrically imbalanced; i.e., a0 increases when cross- 
linkers are deficient.6-8 

Close to the gel point the complex modulus also shows 
an w a  behavior in a bounded frequency range.6-8 Thus, 
the pregel shows an wa response for w >> wo and a typical 
liquidlike behavior, i.e., G*(w) = iwz(1 + iwz)-l, for w 
<< wo. For the real and imaginary parts of the complex 
modulus of G*(o) = G'(w) + iG(w) (G(o) being the 
storage modulus and G ( w )  the loss modulus), this 
implies 

and 

In eqs 4a and 4b wo is the crossover frequency and it 
depends on the gelation stage of the system. With 
increasing cross-linking the value of wo decreases 
toward wo = 0 at  the gel point. Ideally, the complex 
modulus of the critical gel shows an w a  behavior over 
the whole frequency range, i.e. 

On the other hand, the postgel obeys an w' dependence 
for frequencies w >> 60 and a solidlike behavior (i.e., a 
nonvanishing equilibrium modulus G,) for w << 60. 
Assuming that the relaxation modulus G(t) reaches the 
equilibrium modulus G, in an exponential fashion, i.e., 
that G*(o) - G, = iwz(1 + iwz)-l holds, one has for the 
storage and loss moduli: 

G, for w << 0, 
for w >> 0, 

and 

In eqs 6a and 6b 60 denotes the crossover frequency in 
the postgel regime; with increasing cross-linking of the 
system 60 increases from 60 = 0 at the gel point toward 
finite values. 

As pointed out in the Introduction a depends, in 
general, on the gelation stage, so that, typically, for the 
pregel a > a0 in eq 4 and for the postgel a < a0 in eq 
6.7-9 

Starting from the relaxation modulus (eq 31, Chambon 
and Winter proposed a rheological constitutive equation 

where &(t) = d4t)ldt. Equation 7 has only two material- 
dependent parameters, the exponent a and the gel 
strength S. 

From the mathematical point of view, the gel expres- 
sion (eq 7) is a fractional relation. To see this, we recall 
the fractional integration defined through:'OJ1 

valid for arbitrary y < 0. The gel equation (eq 7) 
corresponds to having as lower limit -- in eq 8, which 
is then the so-called Weyl integral.'OJ' In fractional 
rheological constitutive equation~'~-l~ one often uses the 
Riemann-Liouville (RL) integral, for which c = 0 in eq 
8. RL is adequate for studying the transient material 
behavior after a sudden switch of the perturbation, i.e., 
a situation which starts from equilibrium, say having 
o(t) = 4) = 0 for t < 0. Since we discuss here the 
response to harmonic excitations, the Weyl calculus is 
appropriate, and restricing ourselves to it, we use the 
symbolic notation dyldtv = -,Dp. For negative, integer 
y ,  y = -1, -2, -3, .... Equation 8 represents a multiple 
integral of order y ,  as is readily seen by induction;ll eq 
8 can be first used to interpolate between integer, 
negative y values and then to extrapolate to the positive 
y-range; see refs 10 and 11 for details. One can now 
identify the gel equation with the following fractional 
equation: 

as introduced by Friedrich and H e ~ m a n n . ~  On the 
right-hand side of eq 9 the composition rule for the 
fractional derivative d'ldta was used (see again ref 11 
for the mathematical details). 

To get from eq 9 the stress response to a harmonic 
strain excitation 4) = exp(iwt), one has to know the 
fractional derivative of the exponential function. It can 
be shownlOJ1 that 

(10) 
d" exp(iwt) 

dt" 
= (iw)" exp(iwt) 

holds for -1 < a < 1. Hence, eq 9 is the proper 
constitutive equation for a material having a complex 
modulus of power law form (eq 2). 

3. Ladder Models 

Phenomenological approaches have the disadvantage 
that they are not directly related to the underlying 
physical situation. For instance (as we pointed out in 
ref 181, both parallel and sequential relaxation processes 
may result in algebraic decay patterns (eq 1). In this 
section we show that ladder structures allow one to 
describe the relaxation patterns found during the sol- 
gel transition. 

In Figure 1 we display mechanical arrangements 
which lead to algebraic relaxation forms. The models 
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Figure 1. Ladder arrangements used to model scaling 
behaviors. According to the physical regime, the box B 
represents (a) a Maxwell element (pregel), (b) an infinite ladder 
(critical gel), and (e) a spring (postgel). 

consist of ladderlike structures with springs (having 
spring constants EO, El,  Ez, ... ) along one of the struts 
and dashpots (with viscosities t]o,ql, qz, ... )on the rungs 
of the ladder. Here we examine three different forms 
of ladder models: (a) a finite ladder structure, obtained 
by replacing in Figure 1 the box B by a spring E. and a 
dashpot q. in series (a so-called Maxwell element 
(En,qn)), (b) an infinite arrangement, in which case the 
box B in Figure 1 represents a nonterminating ladder, 
and (e) a finite ladder structure, obtained by using a 
spring as the final rung (here the box B consists simply 
in a spring En). 

Let us concentrate on the evaluation of the complex 
modulus. Similar to eq 32 in ref 17 (where we have 
evaluated Eoc(w)/dw) = EdG*(o) for the spring-termi- 
nated ladder), we obtain continued fraction expressions. 
The complex modulus of the infinite ladder, case b, 
fulfills 

-1 E 0 -1 E 1 . -1 E 1 
(io) -(io) -(zo) - 

'I1... (11) EO 70 'IO G*(o) = - 1 +  1 +  1 +  1 +  

where we use a standard notation for continued frac- 
tions, d b  +) f = a/(b + fj, i.e., ref 20. The finite 
arrangements lead to terminating continued fractions. 
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In case a we obtain 

-1 E 0 . -1 E 1 E" E (io) - ( 2 0 )  - (io)-]- (io)-'" 
EO 'IO 'IO 'I"-1 'I. 

1 G*(o) = - 1 +  1 +  1 +  ... 1 +  
(12) 

and for case c we have 

G*(w) = 

Setting in eq 11 EO =El  = ... =E and vo = qt = ... = 7, 
it can be shown (by comparing terminating approxima- 
tions of the continued fraction (eq 11) with the binomial 
series) that the complex modulus of the infinite ar- 
rangement is given by 

where we set T = VIE. For or 4: 1 eq 14 reduces to the 
form G*(o) E E ( i o r P .  Therefore, choosing the same 
spring constanta and viscosities for the whole arrange- 
ment, one gets a complex modulus with a = '12. The 
shorbtime behavior Le., WT z- 1) is dominated by the 
first spring of the ladder, in this range one obtains using 
eq 14 G ( w )  E for the storage modulus and G ( w )  = 
E(wT)-' for the loss modulus. Real materials (in gen- 
eral) show such a solidlike, glassy behavior, but in the 
measurements mentioned above6-8 the required fre- 
quencies are out of the experimental range. 

The finite arrangements a and c show fluid- and 
solidlike long-time behavior, respectively. To render 
these features of the ladder models clear, we plot in 
Figure 2 the frequency dependences of the storage 
modulus G and the loss modulus G shown are case a 
in Figure 2a, case b in Figure 2b, and case c in Figure 
2c. In all cases we set q = E = 1; for the finite 
arrangements we choose n = lo3. In the figures one 
can clearly distinguish three regimes: a olR behavior 
a t  an intermediate frequency regime which crosses over 
a t  WT zz 1 to a solidlike glassy behavior for high 
frequencies, whereas at  low frequencies one has either 
a fluid- or a solidlike behavior, respectively. The 
crossover hquency is numerically found to be WT zz UnZ. 
We hence relate case a to the pregel and case c to the 
postgel situation. 

The long-time behavior of the finite arrangement can 
be derived directly from the low-frequency behavior of 
the complex moduli given in eqs 12 and 13 or inferred 
from Figure 1. We find for case a G*(o) E io (n  + Ut] 
for U T  *( 1, Le., a steady-flow viscosity 7, = (n  + 1 ) ~ .  
This is due to then + 1 dashpots in parallel terminating 
the arrangement. In the spring-terminated case c we 
find from eq 13 G*(w) = (n + l)-lE, i.e., an equilibrium 
modulus G, = (n + WlE. This nonvanishing value G, 
stems from the n + 1 springs in series connecting the 
upper and lower ends of the ladder. The complex 
moduli of finite ladder models consisting of identical 
springs and dashpots were also derived by Tschoegl in 
an alternative way.21 We have checked numerically 
that his results (eq 5.2-94 of ref 21 for the pregel and 
eq 5.2-89 for the postgel) coincide with our continued 
fraction expressions. 
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Figure 2. Storage (full line) and loss modulus (dashed line) 
for the a-c models of Figure 1. In all cases we set E = 7 = 1; 
for a and c we took n = lo3. 

To mimic closely the experimental situation, where 
one investigates the response of gels to a shear load, 
we present in Figure 3 mechanical analogues of the 
models shown in Figure 1, by replacing every coil spring 
by a horizontal series of leaf springs and the dashpots 
by horizontal inelastic blocks which connect all springs 
of one series with the next stage. The blocks are 
exposed to a viscous damping proportional to their 
velocity; this accounts for the interaction of the network 
with its environment. In the pregel case we have finite 
clusters which we take into consideration by terminat- 
ing the ladder by a block (cf. Figure 3a). The infinite 
ladder shown in Figure 3b reflects the infinite network 
of the critical gel. In the postgel case the network has 
an excess of cross-links which leads to an elastic 

m -  m m rm 
- 

Figure 3. Mechanical analogues of Figure 1, with n = 3 for 
a and n = 4 for c. The arrow indicates an external shear load. 

structure; for this case we terminate the system by a 
series of leaf springs which are connected to the bottom 
plate (cf. Figure 3c). 

A power law of a = ' / z  is also evident from the 
pioneering work of Bl i~ard. '~  In his model the ladder 
structures are microscopic representations for the elastic 
chains, where the interactions with the surrounding 
medium are mediated through dashpots. His model 
involves then a complex averaging procedure which 
takes the gel fraction into account; this, however, does 
not affect the value of a. 

So far we have discussed the case a = VZ. As 
mentioned above, this value occurs often in stoichio- 
metrically balanced systems below the entanglement 
limit, whereas an imbalance in the chemical species may 
lead to other a values. In ref 17 we have shown how to 
modify the ladder model so that a takes arbitrary values 
between 0 and 1. For this it suffices to let the spring 
constants and viscosities obey 

E* = C,k'-" and qk = C&l-& (15) 

Inserting these values into eq 11, one can show that the 
continued fraction expression and therefore the complex 
modulus have an wa behavior." Especially, the case a 
> '/2, which is often observed in stoichiometrically 
imbalanced systems, corresponds to a decrease of the 
spring constants and viscosities along the ladder. How- 
ever, the algebraic form of the spring constants and 
viscosities (cf. eq 15) is rather arbitrary and is not 
directly related to the microscopic situation. 

The dependence of the parameter a on the gelation 
stage and on stoichiometry lets us surmise that a 
reflects structural properties of the system, and here 
especially the connectivity of the network. A network 
forms differently when the number of cross-linkers 
varies, and the gelation process is, of course, directly 
related to the establishment of the topological structure. 
It is hence obvious that the ladder arrangements (with 
equal spring constants and viscosities) do not account 
for this fact, since they have all the same sequential 
connectivity; they thus lead to a = '12, and the variation 
of n (Le., the length of the ladder) only affects the 
crossover frequency 00. 

To give a qualitative interpretation of the dependence 
of a on cross-linkings, we have to examine mechanical 
arrangements with other connectivities. In the next 
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section we show that fractal networks lead to an wa 
behavior with smaller values of a than in the ladder 
case. This highlights the dependence of a on the 
additional cross-links formed in the postgel regime. 

4. Fractal Networks 
Let us consider an arbitrary mechanical network with 

nodes rj. Each ri is connected to neighboring nodes rj 
by equal springs with spring constant E .  Furthermore, 
each node is linked to a planar common ground via a 
dashpot with a site-dependent viscosity qi = z(ri) q, 
where z(rd denotes the coordination number of node ri. 
The node's motion is perpendicular to the ground. Due 
to the stresses acting on the node ri, one gets the 
following equation: 

(16) 

where the sum runs over all rj that are nearest 
neighbors to ri and q(t) denotes the displacement of node 
rj. The stress-strain relationship of an arbitrarily 
chosen node ro with its displacement d t )  = E&) and the 
stress dt) = a&) acting on it can be described by the 
following convolution integral: 

~ ( t )  = J'o(T) U(t-z) dz (17) 

In eq 17 the retardance U(t) represents the response of 
the origin ro to a d-type stress input utt) = d(t).21 As 
we proceed to show by using results from random walk 
theory, for fractal networks one has an algebraic 
relaxation behavior of U(t)  at  larger times, i.e. 

~ ( t )  a t-d'z (18) 

where d, is the so-called spectral dimension.22 Using 
Tauberian it follows for the Fourier trans- 
form of Ut) ,  the complex compliance J * ( O ) , ~ ~  that P ( w )  
= wdJZ-l for w - 0 as long as d, < 2. Therefore, we get 
for the complex modulus G*(o) = l / P ( w )  an ua behavior 
for low frequencies with 

(19) 

It is this a which asymptotically holds for the gel 
equation (eq 7) (or equivalently, for the fractional 
equation (eq 9)) in order to describe the long-time 
stress-strain relationship in a fractal network with 
spectral dimension d,. 

To establish the connection to random walk theory 
and therefore to derive eq 18, we first translate the 
mechanical formulation in the more usual electrical 
version, by using one of the electromechanical ana- 
logues.21 Therefore, we identify the springs E with 
conductances R-l and the viscosities qi with capacities 
Ci, i.e., Ci = z(rJ C .  Then the potential U(ri,t) at  site ri 
corresponds to the displacement 4 t h  Using Kirchhoff s 
equations for each node, one obtains the following 
equation for the node potential U(ri,t): 

a = 1 - dJ2 

which is equivalent to eq 16. 
Such an electrical network is directly related to  the 

following random walk problem: Consider a nearest- 
neighbor random walk on a fractal lattice with sites ri. 
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Starting at the origin ro at time t = 0, the probability 
P(ri,t) to find the walker at site ri at  time t is determined 
by the master equation 

with initial condition P(ri,O) = drL,r,,. The sum runs over 
all nearest-neighbor sites r j  of ri, and wg is the transition 
probability per unit time from rj to ri, which is specified 
through the coordination number z(rj) by the relation 
z(rj) wq = w = constant (see ref 24 for details). This 
equation is equivalent to eq 20 if we identify P(ri,t) with 
the quantity CiU(ri,t) (the charge on the capacitor C,) 
and the transition probability wq with the time constant 
(RCj)-l. Now, from the random walk theory on frac- 
tals,22 the probability to be at  the origin P(ro,t) at longer 
times obeys: 

P(ro, t )  t-d"2 (22) 

Since P(ro,t) corresponds to  q&), we have shown that 
eq 18 holds. 

We note that except for the first spring Eo, which only 
affects the short-time behavior of the arrangement, the 
infinite ladder model described in section 3 is a special 
case with d, = 1 and corresponds to  one-dimensional 
diffusion. For all fractal networks one has d, I 1.22 
Hence, in such models a = 1 - d$2 varies between 0 
and VZ, the latter value being attained for linear 
arrangements. The role of additional cross-links is 
hence to decrease the exponent a. 

To be more definite, we consider a special class of 
fractal networks, the so-called Sierpinski-type 
embedded in a d-dimensional Euclidean space. The 
generator GYb,d), the basic geometrical unit from which 
the fractal is built up iteratively, consists of a d- 
dimensional hypertetrahedron of side length b, which 
is filled with b layers of hypertetrahedrons of unit side 
length (see ref 24 for details). As can be shown, the 
fractal dimension df of such an object obeys df = 
In a h  b, with a = (d ); hence, lim-, df = d. The 
spectral dimension d, may be evaluated for each Sier- 
pinski-type fractal using the methods of ref 24. For 
example, for b = 2 one has 

d, = 2 ln(d + l)/ln(d + 3) (23) 

which spans the interval 1.365 ... I d, < 2. As shown 
numer i~a l ly ,~~ for fixed d the spectral dimension d, 
increases with b and reaches asymptotically the upper 
limit d, = 2. 

In Figure 4 we show details of the infinite network 
for the case b = d = 2 which characterizes the usual 
Sierpinski gasket. On top we display the electrical 
system, in the middle the mechanical analogue, and at  
the bottom a version similar to Figure 3. To allow a 
direct comparison with the ladder model, we have 
arranged the structural parts in such a way that one 
can easily see the additional cross-links of the network 
which connect different parts of the (bold figured) ladder 
in a self-similar manner. The origin ro is at the top of 
the triangle displayed, and in the mechanical version 
we have inserted an additional first spring. 

The evolution of the system in the postgel regime can 
now be visualized as follows: Starting from an ef- 
fectively one-dimensional situation, additional cross- 
links create an increasingly dense structure, correspond- 

b id -1  
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Figure 4. From the top to the bottom details of the infinite 
Sierpinski gasket in the electrical version and two mechanical 
analogues (see text for details). 

ing (for a self-similar network) to an increase of the 
spectral dimension; this is tied to a monotonic decrease 
of the observed parameter a. 

So far we have considered only the parameter a which 
characterizes the relaxation at intermediate frequencies. 
At low frequencies, the pregel (postgel) behaves as a 
liquid (solid). As in section 3, one can account for this 
fact by using only finite fractal patterns (by stopping 
the recursive construction after several steps) and by 
using adequate boundary conditions. Using a scaling 
approach, Clerc et al.25,26 have derived the impedance 
of the electrical system for finite Sierpinski gaskets (b  
= d = 2). Generalizing this scaling approach to arbi- 
trary values of b and d, we find for the complex modulus 

-10 0 

log or 
Figure 5. Storage and loss modulus of the Sierpinski network 
with b = 2 and d = 3 at stage n = 20. The inset displays a 
magnification of the rescaled loss modulus (see text). 

of the nth generation: 

Ldf(d + l ) i q  for wz << L-dw 
Gi(w) c(i0)" for L - d w  << wz << 1 (24) 

l iwv for wz >> 1 
In eq 24 t = VIE and a = 1 - d$2. The values of a 
obtained here are less than l12 (as intuitively expected 
for connected lattices) and can be compared to the 
measurements for postgel materials; c denotes either a 
constant or a periodic function of In oz.25,26 However, 
here the oscillations are usually small, so that for 
practical purposes c can be viewed as being a constant. 
The lower crossover frequency 00 = ~ - l L - ~ w  depends on 
the size of the system L = bn and on the random-walk 
exponent d, = 2df/d,.22 Especially, for b = 2 one has 

As they stand, the finite arrangements considered 
here show fluidlike behavior, G* = o, at low and high 
frequencies. Glassy short-time behavior can be mim- 
icked by letting the external force act on the origin ro 
via a spring E. Solidlike long-time behavior may be 
obtained by replacing some dashpots (for example, at 
the main corners) by springs which are connected to the 
ground. Such modifications, however, break the self- 
similarity of the network. 

In Figure 5 we display the complex modulus of the 
finite Sierpinski-type network with b = 2, d = 3, and n 
= 20. Here we have taken also the additional spring E 
at ro into account. To calculate Gn*(w) explicitly, we 
have used recursion formulas as given in ref 25. In 
Figure 5 one can distinguish three regimes: a fluidlike 
behavior (i.e., G = w2 and G = o) at low, an oa behavior 
at intermediate, and a solidlike behavior, G GZ E and 
G '  E(wz)-', at high frequencies. Here a = 1 - d$2 = 
1 - 2 In 2An 6 E 0.226 (cf. eq 24); this slope is indicated 
in the figure by a dashed line. The solidlike behavior 
is due to the additional spring at ro. The crossover 
frequency between the fluidlike and the ma range occurs 
at ooz (d + 3)-" = 6-20 2.7 x the crossover 
to the solidlike range occurs at ot x 1. The direct 
comparison shows a qualitatively similar behavior to the 
Maxwell-terminated ladder model (Figure 2a). One 
should note that at intermediate frequencies G and G" 
coincide in the ladder case (see eq 5 with a = V21, 
whereas in the Sierpinski case they differ by a factor 
tan(a~d2). To display the small oscillations of G* which 
are characteristic of deterministic fractals, we show in 
the inset of Figure 5 a magnification of the rescaled loss 

w o  = t-l(d + 3)-k.  
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modulus G". Using scaling arguments, one finds for the 
period In 6. This observation is consistent with numer- 
ical simulations of random walks on Sierpinski gas- 
keh27 We note, however, that these oscillations reflect 
the deterministic hierarchical structure of the fractal 
investigated, whereas we do not expect this phenom- 
enon in the usual gels. 

6. Conclusion 
In this work we have presented mechanical arrange- 

ments consisting of springs and dashpots which mimic 
the rheological properties of systems of cross-linking 
polymers near the gel point. Ladderlike structures lead 
to scaling laws for the complex (shear) modulus, usually 
with a power law exponent a = V 2 .  The dependence of 
the parameter a on the structural properties of the gel 
can be rendered evident by the use of models based on 
fractal networks. As shown, the parameter a is related 
to the spectral dimension d, of the fractal and describes 
the postgel situation. Special aspects of the pre- and 
postgel behavior can be rationalized by using finite 
fractal patterns. 
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