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ABSTRACT: We study the rotational dynamics of a flexible polymer initially wrapped
around a rigid rod and unwinding from it. This dynamics is of interest in several
problems in biology and constitutes a fundamental instance of polymer relaxation from
a state of minimal entropy. We investigate the dynamics of several quantities such as the
total and local winding angles and metric quantities. The results of simulations
performed in two and three dimensions, with and without self-avoidance, are explained
by a theory based on scaling arguments and on a balance between frictional and entropic
forces. The early stage of the dynamics is particularly rich, being characterized by three
coexisting phases.

■ INTRODUCTION

The genetic information in eukaryotic cells (including cells of
animals and plants) is accessed through DNA unwinding on
two different length scales. On the larger scale the DNA double
helix has to unwind from proteins, on the smaller scale the two
strands of the double helix need to be separated. In the first
case a semiflexible polymer (DNA double helix) is wound
almost two turns around a protein cylinder forming the so-
called nucleosome,1,2 in the second case two flexible polymers
(chains of nucleotides) are twisted around each other leading to
the much stiffer double helix. The unwinding of the DNA from
the nucleosome or the separation of the DNA double helix is
achieved inside a cell in various ways, often involving molecular
motors (chromatin remodellers, polymerases, ...) that usually
give access through a local opening of the structures. Inside a
test tube unwinding can be induced, typically on a global scale,
through a change in temperature (DNA melting/helix−coil
transition2−5), salt concentration (salt-induced DNA release6,7)
or through application of an external force (nucleosome
unwrapping,2,8−11 DNA unzipping4,12). Local unwinding can
also occur spontaneously leading to the breathing of
nucleosomes and of DNA (usually called site exposure in
nucleosomes2,11,13−15 and denaturation bubbles in DNA2,5,16).
Finally, during transcription, where the elongating RNA
polymerase produces a RNA transcript, one faces again the
situation of a flexible chain, the transcript, being initially wound
around the much stiffer DNA double helix.17

To gain insights into the unwinding process it is convenient
to start from simple setups. In this work we study the
unwinding process of an idealized flexible polymer model that
is initially wound around a stiff rod, in a configuration of
minimal entropy, which resembles some of the features of the
DNA or RNA unwinding. This model was introduced and
studied in ref 18. Here we extend the results of that analysis

focusing in particular on metric properties. We present a scaling
argument which fully captures the early stages of the dynamics
that is characterized by power-law scaling. Despite the
simplicity of the model, there is a complex dynamical behavior.
It is the entropy gain that drives the polymer from the initial

configuration toward the full random coil configuration. A
sketch of this process is given in Figure 1, which shows different
snapshots of the polymer configurations in the course of a
simulation. The polymer is initially fully wound in a helix
around the rigid rod. One end of the polymer is tethered to the
rod whereas the other end is free, hence the relaxation proceeds
from the free end. This process shares some similarities with
the simpler problem of the relaxation from one end of a
completely stretched polymer.19,20 Consider a polymer tethered
at one end and fully stretched by a strong flow. When the flow
is turned off the polymer relaxes back to its coiled equilibrium
conformation. As one end is tethered the relaxation starts from
a free end, from where the coil grows. The unwinding has a
similar relaxation from the free end which occurs through a
rotational motion instead of a translational recoiling. However,
the phenomenology in the case of unwinding is much richer, as
we will show.
This paper is organized as follows. In the section Models and

Simulations, we review the models and the type of Monte Carlo
simulations used. In the section Results and Discussion, we
focus first on the early unwinding dynamics which is
characterized by power-laws scaling in time. It is shown that
force balance equations and scaling arguments yield exponents
in very good agreement with simulations. Second, we discuss
the late stage of the relaxation process. Here the theory of ref
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18 predicts a power-law scaling for the longest relaxation time
with logarithmic corrections. The analysis is extended to other
lattice and off-lattice models and the results confirm the validity
of the theory.

■ MODELS AND SIMULATIONS
Figure 1 shows different snapshots of the polymer config-
urations during the unwinding from an infinitely long rod.
Initially the polymer is fully wound and in the course of time it
unwraps. The polymer has L monomers labeled with indices
1 ≤ k ≤ L. One end (k = 1) is fixed to the rod, while the other
end (k = L) is free. We have studied different cases to check the
robustness and universality of the numerical results. For the
ideal chain (the case without excluded volume) we modeled the
polymer in three different ways. In a first model we considered
a random walk (RW) with unit steps on a face-centered cubic

(FCC) lattice. In the initial helical configuration, the polymer
performs one turn in six steps along the rod. An update of the
configuration consists of L attempts of so-called corner flips,
where the randomly selected monomer is moved to a
neighboring lattice site if the distances to the neighboring
monomers are conserved (this is a lattice realization of Rouse
dynamics21). The new configuration is accepted if the
monomer does not overlap with the rod.
We also considered a random walk on a square lattice (i.e., a

bidimensional lattice). In this case the starting configuration
consists of a chain with a rescaled segment length wound
around the origin. In the initial configuration on the square
lattice one turn around the origin is performed by 8 monomers.
The corner flip method is used here as well.
Finally, we used a freely jointed chain (FJC) to model three-

dimensional off-lattice polymers. Neighboring monomers have
a fixed distance a from each other and the rod has a diameter
1.5 a ensuring that monomers cannot accidentally pass from
one side to the other in the course of unwinding. The initial
helical configuration is such that one turn is performed with 10
monomers. Also in this case a time step of the dynamics
consists in L attempts of moves for randomly chosen
monomers. When a monomer is selected, a new configuration
is constructed via a rotation of that monomer around the axis
defined by the two neighboring monomers by an angle
randomly selected from [0,2π]. The free end is updated with a
new random position preserving the bond length with the
second monomer. The new configuration is accepted if it does
not overlap with the rod.
For the case of a polymer with excluded volume we use only

the model of a self-avoiding walk (SAW) on the FCC lattice.
The procedure is the same as for the ideal chain on the FCC
lattice, with the added constraint of excluded volume between
the monomers: one rejects moves violating it.

■ RESULTS AND DISCUSSION
Short-Time Dynamics. Radial Distance. We consider first

the “radial” distance Re which is defined as the average distance
of the free end monomer from the rod. This quantity is shown
in Figure 2 (RW’s) and 3 (SAW). Starting from a minimal value
for the fully wrapped configuration at t = 0 the growth of Re
follows a power law. In the ideal chain cases we find a first,
short-time, regime:

∼R t t( )eRW
2 0.25

(1)

This scaling with time of a spatial length scale is remarkably
slow (|Re| ∼ t1/8) compared to the usual relaxation time scales
encountered in polymer physics. The exponent is robust and is
found in the minimalistic 2D polymer on a square lattice
(Figure 2a), the RW on a FCC lattice (Figure 2b) and the
freely jointed chain off-lattice (Figure 2c). We performed also
simulations for a 3D excluded volume chain on an FCC lattice,
for which we find a power law with a slightly larger exponent:

∼R t t( )eSAW
2 0.27

(2)

as it can be seen in Figure 3.
To understand the origin of this exponent we model the

unwinding starting from a two phase picture. We assume that
during the early stage of the dynamics the polymer starting
from the fixed end has n monomers tightly wrapped around the
rod, which are frozen as in their initial t = 0 configuration, while
L − n monomers are loose (we indicate these as phase 1 and

Figure 1. Snapshots of a SAW with L = 384 monomers during
unwinding from a rod. One end (blue) is attached to the rod and the
other end (red) is free. Snapshots are taken at times t = 0, t = 7 × 104,
t = 2 × 106, and t = 5 × 106 (from top to bottom). The second
configuration is in the early stage of the unwinding, where one can
recognize three different phases: the part close to the fixed end is still a
tightly wound helix, the middle section shows a loose helix
configuration, and the part close to the free end forms a random coil.
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phase 2, respectively, see Figure 4a). We assume that the loose
monomers form a homogeneous helix with a constant pace, but
which is loosely wrapped around the rod. Obviously, if the
loose helix would extend until the free end of the polymer, the
radial distance Re would not grow in time. The two phase
model is the starting point of our analysis and we will focus on
the configuration of the polymer close to the free end later. We
assume that the dynamics is governed by the following
equation:

γ = −∂
∂

n
t n

d
d2 (3)

which is a balance between frictional and “entropic” forces
during the growth of the hel ical domain. Here

= + −n f n f L n( ) ( )1 2 is the total free energy of the
configuration, with f1 and f 2 the free energies per monomer
of the two phases (with f 2 < f1 as the loose helix has a higher
entropy than the tight helix). γ2 is the friction coefficient. The
total winding angle of the last monomer is equal to 2π times the
number of times the polymer is wrapped around the rod. For
the two helices model such a quantity is then given by

θ θΘ = Δ + − Δn L n( )1 2 (4)

where Δθ1 and Δθ2 are the densities of winding for the two
phases (with Δθ1 > Δθ2, as phase 2 is more loosely wrapped
compared to phase 1). A decrease in n leads to a decrease in the
total winding angle and the whole loose helix rotates in a

corkscrew motion. The friction coefficient is then proportional
to the length of the rotating domain γ2 ∼ (L − n). Using this
input and the form of n( ) we get from the integration of eq 3:

− ∼L n t (5)

The angular velocity is given by eq 4:

Ω = Θ ∼ ∼
t

n
t t

d
d

d
d

1
(6)

which decreases in time as there is an increasing friction when
the loose helix grows. The assumption that phase 2 is a helix of
constant pace and radius is an approximation. However, as we
will show, the numerical data are in good agreement with a
square root growth (eq 5), which is a consequence of that
assumption. Note that the assumption can be relaxed, allowing
phase 2 to have fluctuations; the only essential requirement is
that the friction γ2 should scale linearly with the length of the
domain. Our approximation is similar in spirit to the
monoblock approximation where an inhomogeneously

Figure 2. Average squared distance ReRW
2 of the free end from the rod versus time (ideal chain) for (a) a 2D polymer on a square lattice, (b) a 3D

polymer on a FCC lattice and (c) a FJC in 3D, for various chain lengths. For the three models the short time regime follows the power law ReRW
2 ∼

t0.25. This regime ends at times scaling as τ′ ∼ L2, see insets (the values of τ′ for the shortest chains are indicated by vertical arrows). The plateaus
indicate the completion of relaxation. The averages are made at least (for the largest sizes) over (a) 2000 and (b) 3000 configurations. In (c), due to
larger computational effort in continuous space for a local move, the average is performed only over 150 configurations, which explains the larger
noise.

Figure 3. Squared distance ReSAW
2 of the free end from the rod versus

time for a excluded volume chain on an FCC lattice. The short time
regime follows the power law ReSAW

2 ∼ t0.27. The inset shows the
scaling of τ′ with the polymer length. Averages are made at least over
3000 configurations (for the largest size).

Figure 4. (a, b) Configurations of the polymer during unwinding. (a)
Two phase model consists of a tight helix (phase 1), which is the initial
conformation, and a loose helix with constant pace (phase 2). (b)
Extension of the two phase model accounting for the growth of an
unwound coil of length l at the polymer end. (c, d) View of a polymer
anchored to the rod (which is perpendicular to the plane) and rotating
with angular velocity Ω. If Ω is small the polymer rotates while
maintaining its equilibrium shape (case c). For high Ω the polymer
gets partially wrapped around the rod, while a part of length l
maintains its equilibrium shape. Equation 9 gives an estimate of the
length l.
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stretched polymer is modeled by a homogeneously stretched
one, an approximation that does not change the scaling of the
large scale geometry of the deformed chain.22,23

Let us consider now the growth of a coiled domain at the end
of the chain (the stretch AB of length l shown in Figure 4b).
This domain grows from a polymer rotating with angular
velocity Ω. Let us assume that the friction originating from the
coiled part is negligible compared to that of the loose helix, so
the calculations leading to eqs 5 and 6 remain valid. To
understand the coil growth we consider a polymer attached to a
rod and rotating with angular velocity Ω. If the polymer is
sufficiently short and Ω small, its equilibrium conformation is
not perturbed by the rotation and in particular it will have no
winding (Figure 4c). If the polymer length exceeds a given
threshold value, then part of the polymer close to the
attachment point gets wound while the final part rotates
maintaining its equilibrium shape (length of the part AB in
Figure 4d). We estimate now the length of the end coil for a
rotating polymer. To understand the calculation it is useful to
consider the analogous problem of a polymer pulled by one end
by a constant force.22,24−27 The polymer maintains its
equilibrium conformation if the applied force, f, or the polymer
length, l, do not exceed the values fixed by the equation:

∼fR k TF B (7)

where RF ∼ lv is the Flory radius, kB the Boltzmann’s constant,
and T the temperature. For a polymer rotating with an angular
velocity Ω the force which distorts its shape is due to friction.
The expression analogous to eq 7 is then given by

γ ∼vR k TF B (8)

Using v = ΩRF and γ ∼ l for a Rouse polymer we obtain the
following relation for the length of the coiled unwound end of
the rotating polymer:

∼
Ω

ν+l
k T1 2 B

(9)

Using the law 6 for the angular velocity, we finally obtain for
the growth of l:

∼ ν+l t1/(4 2) (10)

and, from the equilibrium relation Re
2 ∼ l2v we find that the

squared distance from the rod grows as

∼R t z
e

2
(11)

with z = ν/(2ν + 1). Note that z = 1/4 for a Gaussian polymer
(ν = 1/2) and z ≃ 0.27 for a self-avoiding polymer (ν ≃ 0.59)

which is in excellent agreement with the numerical results
(Figures 2 and 3).
We expect that the above description remains valid until the

loose helix has grown to reach the first monomer. This
corresponds to n = 0, i.e. when the tight helix has disappeared.
According to eq 5 this happens at a characteristic time τ′ scaling
as τ′ ∼ L2. We estimated τ′ for polymers of different lengths
from the simulation data of the radial distance of Figures 2 and
3. This is the time at which the growth law starts deviating from
eq 11. The vertical arrows in Figure 2 mark the estimated τ′ for
the polymer of shortest length. The insets of Figure 2a and 2b
show plots of τ′ vs L as obtained from the data of the main
plots. There is an excellent agreement with the predicted
scaling τ′ ∼ L2. An equally good agreement was found for all
the other cases studied. Note that the scaling τ′ ∼ L2 does not
depend on the presence of self-avoidance, as demonstrated by
the data in the inset of Figure 3.
We consider next the distance d(s) between the free end

monomer at position L and a monomer L − s projected onto a
plane perpendicular to the rod. In two-dimensional models this
is equal to the total distance d(s) ≡ |R⃗L − R⃗L−s| where R⃗i is the
position of monomer i. In three dimensions, for a rod parallel
to the z-axis we have

= − + −− −d s x x y y( ) ( ) ( )L L s L L s
2 2

(12)

where xi and yi are the coordinates of the monomer i. In all
cases analyzed (see Figure 5) we find for small s a scaling
d2(s) ∼ s2ν which demonstrates that the end part of the polymer
is an equilibrated coil. The plots show that d2(s) saturates at a
constant value for sufficiently large value of s. This point
identifies the end of the coil and the beginning of the loose
helical region. From scaling arguments we expect

= ν
ν+

⎛
⎝⎜

⎞
⎠⎟d s s g

s
t

( )2 2
1/(4 2) (13)

where for small values of x = s/t1/(4ν+2) the function g(x)
converges to a constant. For large x we expect g(x) ∼ 1/x2ν as
d2(s) is independent of s, as the projected distance from the end
monomer to the monomers in the helical domain cannot
increase. The inset of Figure 5 shows a scaling plot of d2(s)s−2ν

vs s/t1/(4ν+2) in full agreement with the scaling ansatz 13. This
result supports the prediction that the coil growths according to
eq 10. Note that the scaling function has a maximum at the
crossover between the two scaling regimes. The maximum is
not very pronounced but indicates that the polymer, compared

Figure 5. Plot of d2(s) vs s, for different times in the short time regime and L = 768. The quantity d(s), defined in eq 12, is the planar distance of the
last monomer (index L) at the free end from the (L − s)-th monomer. For small s, one has d2(s) ∼ s2ν, indicating that the polymer forms a random
coiled phase from its free end. The region where d2(s) ∼ s2ν holds grows in time. The cases shown are (a) 2D RW, (b) RW on the FCC lattice, and
(c) SAW on the FCC lattice. The insets show rescalings of the data; see eq 13
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to an equilibrated coil, is slightly more stretched in the vicinity
of the rod.
Dynamics of the Total Winding Angle. The theory

developed in the previous section can be tested also on the
dynamics of the total winding angle. Taking into account the
presence of the coil of length l at the polymer end we need to
modify eq 4 with

θ θΘ = Δ + − − Δn L l n( )1 2 (14)

as the coil, which is of length l, does not contribute to the
winding. We define with Θ0 = LΔθ1 the initial total winding
angle; combining eqs 14, 5 and 10 we then get:

θ θ θΘ − Θ = − Δ − Δ + Δ

= +

= +

ν

ν ν

+

+

⎛
⎝⎜

⎞
⎠⎟

L n l

At Bt

At
B
A t

( )( ) ,

,

1
1

,

0 1 2 2

1/2 1/(4 2)

1/2
/(2 1) (15)

with A and B being some positive constants. The prediction is
that Θ0 − Θ scales as ∼ √t, with a slowly decaying correction
term originating from the equilibrated end coil. The correction
is predicted to scale as ∼ t−1/4 for a RW and ∼ t−0.27 for a SAW.
In order to test the validity of eq 15 we plot in Figure 6 the
quantity Θ0 − Θ as a function of t in a log−log scale for three
ideal-chain models in two and three dimensions, and the same
for SAW’s in Figure 7. In all cases, the data approach for
sufficiently long times the expected ∼ √t law.

To investigate the nature of the corrections to the leading
scaling behavior we plot in the insets of Figure 6 the quantity
(Θ0 − Θ)/√t vs t−ν/(2ν+1). The data for short times and for
different polymer lengths follow a straight line in good
agreement with the prediction of eq 15. The slope of the
lines are positive and imply B > 0, as expected. Some stronger
nonmonotonic behavior is observed in the 3D off-lattice model
which does not have a counterpart in the other cases studied.
The behavior of the winding angle was also investigated in a
previous publication18 and estimated to scale in the early time
dynamics as Θ0 − Θ ∼ tρ where ρ ≈ 0.43−0.44. This seemed to
match the short time dynamics rather well, although a closer
inspection of the data shows that eq 15 fits the data better. The
analysis of the local winding, which follows, gives further
support of a √t growth of the unwound domain.

Local Winding Angle. Further insight of the polymer
dynamics can be obtained from the analysis of the local winding
angle θ(k), which is the winding angle of the kth momomer. As
the winding angle is counted from the monomer attached to
the rod (k = 1), one has θ(1) = 0, whereas the total winding
angle defined above is Θ = θ(L). Figure 8 shows the time
evolution of θ(k) vs k for different times and for a polymer of
length L = 512 for a planar RW. At t = 0 the configuration is
fully wrapped around the rod which corresponds to a linear
increase θ(k) = Δθ1k. As the time evolves θ(k) decreases in a
more pronounced manner starting from the free end of the

Figure 6. Scaling of Θ0 − Θ vs time, for different polymer lengths, for the ideal chain models. The numerics are well fitted by a power law ∼ t1/2.
(Insets) Plots of (Θ0 − Θ)t−1/2 vs t−1/4. The dashed line is predicted from eq 15, confirming the corrections to scaling obtained from our model.

Figure 7. Scaling of Θ0 − Θ vs time, for different polymer lengths, for
the SAW model. (Inset) Plot of (Θ0 − Θ)t−1/2 vs t−1/4. The dashed
line is predicted from eq 15, confirming the corrections to scaling
obtained from our model.

Figure 8. Time evolution of the local winding angle θ(k) vs monomer
index k for the 2D RW of size L = 512. The dashed tilted line
corresponds to the fully wrapped conformation θ(k) = Δθ1k. The data
are obtained for increasing times t1 = 10 000, t2 = 20 000, t3 = 40 000,
t4 = 80 000, t5 = 160 000 and t6 = 320 000. The vertical dashed-dotted
line denotes the boundary between the tight helix of length n and the
loose part of length L − n at the time t1. Inset: The growth of the loose
domain follows the square root behavior predicted by eq 5
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polymer; at short times there is a domain of length n which is
still fully wrapped as at time t = 0, followed by a loose part of
length L − n. The inset of Figure 8 shows a plot of L − n vs t.
The data are in very good agreement with the square root
growth predicted by eq 5. Differently from the data for the total
winding angle of eq 15, in this case there are no corrections to
scaling expected.
Late Stage Relaxation. In the previous section we have

fully characterized the early time relaxation dynamics. We
found that the first regime in which the typical polymer
configuration looks like in Figure 4b ends at a time scaling as τ′
∼ L2. At very long times the dynamics was studied in ref 18
using a force balance equation for the total winding angle Θ.
This equation reads:

γ Θ = −∂
∂Θτ t

d
d (16)

where is the free energy of a polymer in equilibrium with a
total winding angle Θ and where γτ ∼ L1+2ν is the friction
coefficient. The free energy is a function of a scaling variable Θ/
(log L)α, where α is an exponent governing the fluctuations of
the winding angle at equilibrium. For RW’s it is known
rigorously28 that α = 1 while numerical simulations of 3D
SAW’s yield α ≃ 0.75.29 For small winding angles the free
energy is quadratic in the scaling variable, so that the relaxation
to equilibrium becomes exponential:18 Θ(t) ∼ e−t/τ where τ is
the longest relaxation time:

τ ∼ ν α+L L(log )2 1 2
(17)

Since the initial configuration is fully wound with Θ0 ∼ L, the
total unwinding time is given by τ* ∼ τ log L.18 The data are
best analyzed using the definition of a running exponent, which
probes the local slope of the data in a log−log plot. From eq 17
we get:

δ
τ

ν α≡
*

= + + +
L

L aL
( )

d[log ]
d[log ]

1 2
2 1
log( ) (18)

where we have included a scale term a, in order to account for
further corrections to scaling. Figure 9 shows a plot of the
numerical value of δ(L) in two and three dimensions obtained
from simulations of RW’s. These data extend those of ref 18 by
including the three-dimensional case for both FCC lattice (b)
and off-lattice (c) models. The data are compared with eq 18
where there is only a single adjustable parameter a used in the
fit. The agreement is very good confirming the validity of the
analytical approach of force balancing in eq 16, which describes
the process using the total winding angle as a single reaction
coordinate.

■ CONCLUSION

In this paper, we have investigated the problem of the
unwinding dynamics of a flexible polymer from a rigid rod.
Scaling arguments and force balance equations allowed us to
fully characterize the early stages of the unwinding and the late
stages of the relaxation dynamics. These arguments are
supported by extensive numerical simulations in two and
three dimensions, with and without self-avoidance. The early
dynamics can be understood by a three-phase picture, where
the polymer configuration starting from the fixed end can be
described by a tight helix, a looser helix and a free random coil.
The latter two phases grow in time following two different
dynamical laws as predicted by eqs 5 and 10. The analysis of
various quantities from numerical simulations as metric
distances or winding angles are all consistent with the analytical
theory. Interestingly, the first growth law 5 does not contain the
exponent ν and hence is superuniversal, being the same for
random and self-avoiding walks. In the late stage dynamics we
have extended the results of ref 18 to different models and
confirmed the scaling form of the longest relaxation time which
involves logarithmic corrections.
The emerging picture is that of a relatively quick loosening of

the polymer, which remains very close to the rod in the early
stages of the dynamics. This is followed by an intermediate
regime where the distance from the rod grows in a faster way
and leads to the final relaxation. Differently from the early and
late time behaviors the intermediate regime does not appear to
display a clear-cut scaling. This can be seen, for instance, in the
behavior of Re

2 depicted in Figure 2. During early dynamics,
until a characteristic time τ′, Re

2 follows a power-law scaling. In
the late time dynamics, Re

2 reaches a plateau. The intermediate
time regime links the two regimes showing no clear evidence of
a power law behavior. A typical snapshot of the intermediate
regime is shown in Figure 1 (third configuration from the top).
Its characterization remains a challenge for future work.
The two phase model description of polymer dynamics has

recently gained some popularity: as examples we mention here
the case of the translocation of a polymer through a
nanopore,30−32 the pulling of a polymer by a constant force
from one end26,27 and the folding of a DNA hairpin.33 In these
problems, the polymer is subject to some local forcing and set
into motion through the propagation of tension along its
backbone. As the tension does not propagate instantaneously,
the polymer is not set into motion at once. To describe the
motion it is usually assumed that one can divide the polymer
into different phases, which leads to some analytical predictions
of the exponents governing the dynamics.30−33 In this paper, a
similar approach was adopted to study a complementary case,

Figure 9. Effective exponent defined by eq 18 for models without self-avoidance in two and three dimensions. Asymptotically in L this quantity is
expected to converge to 2ν + 1 = 2. The solid line is given by eq 18 with a single adjustable parameter, the scale factor a.
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namely that of the relaxation dynamics of an initially stretched
(helically wrapped) polymer. The excellent agreement between
simulations and model results shown in this paper, corroborates
the validity of a two-phase model approach in the description of
nonequilibrium polymer dynamics.
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