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Abstract
Fluorescence resonance energy transfer (FRET) measurements allow one to observe site
exposure in nucleosomes, i.e. the transient unwrapping of a part of the wrapped DNA from the
histone octamer. In such experiments one can typically distinguish between a closed state and
an open state but in principle one might hope to detect several states, each corresponding to a
certain number of open binding sites. Here we show that even in an ideal FRET setup it would
be hard to detect unwrapping states with intermediate levels of FRET efficiencies. As the
unwrapped DNA molecule, modelled here as a wormlike chain, has a finite stiffness, shape
fluctuations smear out FRET signals completely from such intermediate states.
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1. Introduction

In eukaryotic cells the DNA molecules are wrapped around
protein cylinders forming so-called nucleosomes, the basic
repeat unit of the chromatin complex. In a nucleosome
147 base pairs (bp) of DNA are wrapped along a left-
handed superhelical wrapping path in one and three quarter
turns around an octamer of histone proteins [1]. The main
contribution to the DNA-histone interaction is localised at
14 binding sites where the minor groove of the DNA faces
the octamer. The biophysical properties of nucleosomes
can nowadays be probed via diverse experimental methods.
We focus here on fluorescence resonance energy transfer
(FRET) as a means to detect transient DNA unwrapping in
nucleosomes.

The Widom group [2–6] demonstrated first that the
nucleosome is a dynamic structure with parts of its DNA
spontaneously unwrapping from either of its ends. They
speculated that this site exposure mechanism gives DNA

binding proteins access to target sequences if they happen to
be located inside a nucleosome. In fact, in the experiments the
accessibility for restriction enzymes was measured directly.
It was found that the access to the restriction sites is more
reduced the deeper the site is buried inside the nucleosome.
A theoretical analysis of this experiment [7, 8] estimated that
the net adsorption energy per binding site is about 1 kBT

where kB is Boltzmann’s constant and T is the temperature.
This suggests that the attraction to the histone core has
been tuned to just overcome the huge bending cost for the
DNA wrapping, thereby allowing for spontaneous opening
fluctuations.

Nowadays one can follow the unwrapping dynamics more
directly with the help of FRET. In such experiments a donor
and an acceptor dye are attached to the DNA and to the octamer
[9–14] or both to the DNA molecule [15–25]. In all the
experiments the donor and acceptor are positioned in a such
way that they are close to each other for a completely wrapped
nucleosome, leading to a FRET signal. On the other hand,
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Figure 1. (a) Nucleosome with a straight unwrapped DNA portion. (b) Same as in (a) but with DNA bent. The depicted shape fluctuation
shortens the distance between donor (green) and acceptor (red), thereby increasing the FRET efficiency. (c) Relation between z2, the
z-position of the acceptor, and r , its distance from the z-axis for l = 10 bp (red), l = 20 bp (purple) and l = 30 bp (blue). Comparison
between Monte Carlo simulation (dots, 1000 realisations each) and theory, equation (9).

Figure 2. FRET efficiency distribution for three different amounts of unwrapping: 10 bp (red diamonds), 20 bp (purple squares) and 30 bp
(blue circles); we disregard here the fully wrapped state. The corresponding geometry of the nucleosomal DNA is schematically indicated
above each peak indicating the location of donor (green circle) and acceptor (red circle). Also shown is the combined FRET efficiency for
the three unwrapped states (black triangles) assuming that the opening of each binding site (small circles in the nucleosomes) costs an extra
amount of 1 kBT . The broadening of the lines is calculated assuming bursts of 100 photons. In this plot we do not account for the shape
fluctuations of the unwrapped DNA portion. As we shall demonstrate, these shape fluctuations have a dramatic impact on the FRET
efficiency distribution, see figure 4(b).

when a sufficient amount of DNA is unwrapped the distance
between donor and acceptor is too large for FRET to occur.
As a result the observed distribution of FRET efficiencies is
typically bimodal with a peak close to one (closed nucleosome)
and a peak close to zero (open nucleosome).

In this paper we ask the question whether it is theoretically
possible to have more than two peaks. Specifically, we
calculate here the distribution of FRET efficiencies in an ideal
experiment that does not suffer from the typical problems
of an experimental setup (shot noise, flexible attachments of
dyes, label stoichiometry, detection efficiencies, dye quantum
yields, donor fluorescence leakage in the acceptor channel,
direct excitation of the acceptor and many more). The setup
we have in mind is depicted in figure 1(a) and is close to the
one used in the experiments reported in [21]. When the DNA
is fully wrapped the dyes are close to each other since they are
just one helical turn apart: their distance is about 2.5 nm. The

FRET efficiency follows from the distance R between donor
and acceptor via the relation

E = 1

1 + (R/R0)
6 (1)

with R0 = 6.5 nm [22]. With the opening of each binding
site, the distance of the dyes grows; the geometrical details are
given further below in this paper. For one binding site open,
i.e., 10 bp unwrapped, we estimate a distance of about 2.8 nm
and a FRET efficiency E = 0.99. For two binding sites open,
or 20 bp unwrapped, the distance has grown to 5.6 nm and the
efficiency is now E = 0.71. For three binding sites open, or
30 bp unwrapped, the distance is 10.6 nm and the efficiency
has dropped to E = 0.05. For simplicity we will disregard
in this study states with more than three open binding sites as
they rarely occur [2, 7].
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In figure 2 we show the expected distribution of FRET
efficiencies for the first 3 unwrapping states. In this plot
we accounted for a broadening of the peaks as expected for
a finite number of photon counts per burst, here assumed
to be 100, a typical value encountered in single-pair FRET
experiments [21]. The distribution for each distance is then
given by an appropriate binomial distribution [26]. We show
both the distribution for pure states with a fixed amount of
unwrapping (10 bp (red diamonds), 20 bp (purple squares) and
30 bp (blue circles)) as well as a combined efficiency where
we assume following [7] that the opening of each binding site
costs 1 kBT (black triangles). Even in the latter case one can
clearly distinguish three different unwrapping states with three
different FRET efficiencies.

This raises the question why there are no clear signals for
states with intermediate FRET values in the experiments [21].
We will show that, even in an ideal experimental setup, it
is practically impossible to see such a signal. This is due
to the shape fluctuations of the unwrapped portion of the
DNA molecule. This might be surprising as the length of
the intermediate unwrapped state is only 20 bp, much smaller
than the persistence length of about 150 bp. However, the very
sharp decay of the FRET efficiency around the distance R0,
see equation (1), leads to an extreme broadening of the DNA
shape fluctuations in the FRET efficiency distribution.

In the following section we determine the shape
fluctuations of the unwrapped portion of the DNA molecule.
We first give an approximate analytical expression based
on the continuous wormlike chain model and then test the
quality of our prediction by a Monte Carlo simulation of a
discrete chain. In section 3 we present the results, namely
the distribution of dye–dye-distances for various unwrapping
states of the nucleosome and the corresponding distributions
of FRET efficiencies. We provide conclusions in section 4

2. Methods

Our goal is to determine the distribution of distances between
a donor and an acceptor that result from shape fluctuations of
the free portion of the DNA molecule, i.e. the part that is not
adsorbed on the histone octamer, see figure 1(b), and how these
fluctuations influence the FRET efficiency. In the next subsec-
tion we calculate the probability distribution for the position of
the acceptor, which is assumed to be located on the unwrapped
DNA portion, see figure 1, by modelling the DNA as a contin-
uous wormlike chain. To make the calculation feasible we as-
sume that the dye stays in the horizontal plane given by z = z2.
The quality of this assumption is checked afterwards by per-
forming a Monte Carlo simulation of a discrete wormlike chain.

2.1. Shape fluctuations of the unwrapped DNA

We model the DNA as a wormlike chain with Hamiltonian

H = 1
2
kBT lp

∫ L

0

(
du(s)

ds

)2

ds (2)

where lp is the persistence length of DNA, L its contour length,
s the coordinate along the DNA, and u the unit tangent vector

along the DNA. At one end, at s = 0, the DNA is adsorbed
to the histone octamer. We assume that this forces the tangent
vector there to be constant and we choose u(0) = ez where ez

is the unit vector in the z-direction. We also choose the origin
of our coordinate system at this adsorption point, see figure 1.
In reality the adsorption potential is not infinitely narrow so the
tangent vector at s = 0 might actually fluctuate as the actual
position of the DNA varies. We neglect this effect since the
positional fluctuations of the DNA at the binding sites are very
small, on the order of 0.1 nm [1, 8, 27]. The other end of the
DNA is free so we have

du
ds

∣∣∣∣
s=L

= 0. (3)

We start by calculating the distribution of positions of a
given point along the DNA at s = l where 0 < l ! L. If there
were no fluctuations this point would be at lez (this corresponds
to the position of the acceptor in figure 1(a)). If we include
fluctuations the distribution of positions is given by

Gt (r) =
∫

D[u] δ(r −
∫ l

0 uds)e− H
kBT

∫
D[u] e− H

kBT

, (4)

see [28, 29]. The DNA we consider is short so fluctuations are
small and we write

u ≈ uxex + uyey +
(

1 − 1
2
u2

x − 1
2
u2

y

)
ez (5)

where ux, uy ≪ 1. We follow [28] and expand the
Hamiltonian H , the argument of the δ-function, and the
measure to second order in ux and uy . We then expand ux and
uy in a sine-series, taking into account the boundary conditions:

ux =
∞∑

kx=0

akx
sin

(
(2kx + 1) πs

2L

)
(6)

and a similar equation for uy . The delta function in equation (4)
can be written as the product of three delta functions: one
in the x-direction, one in the y-direction, and one in the z-
direction. The delta function in the z-direction makes an
analytic calculation of Gt (r), within our approximation, hard
if not impossible. Thus we calculate G (x, y) =

∫
Gt (r) dz

instead. In fact, due to the rotational symmetry around the
z-axis G only depends on the distance r =

√
x2 + y2 from the

z-axis.
We use 2πδ(t) =

∫
exp (iqt) dq to calculate G(r):

G (r) ≈
3lp

2π l3
exp

(
−

3lpr
2

2l3

)
, (7)

see [30] for details. Note that G(r) does not depend on L but
only on l. The average distance to the z-axis is

⟨r⟩
l

≈
√

π l

6lp
(8)

which shows that even for l ≪ lp the fluctuations can be
considerable. For instance, if we take l = 0.1lp then ⟨r⟩/
l ≈ 0.2.
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Along similar lines we calculate the average z-position for
a given value of r:

⟨l − z(r)⟩
l

≈ l

10lp

(
1 +

6lpr
2

l3

)
. (9)

This formula is very accurate as a comparison to Monte
Carlo simulations (described in the next section) shows, see
figure 1(c) where z2 = ⟨z(r)⟩, except for some deviations
for rare large deformations where equation (9) overestimates
⟨z(r)⟩. Just to get an idea, for r =

√
2l3/(3lp) the function

G (r) has dropped by 1/e compared to its value at r = 0. One
has then an average shortening by ⟨l − z(r)⟩ = l2/(2lp). As
long as l ≪ lp this shortening is very small, e.g. about 0.1 nm
for 10 bp and still only about 1 nm for 30 bp. To estimate the
range of z-positions at given r we also give here the second
moment

√
⟨(l − z(r))2⟩ − ⟨l − z(r)⟩2 = l2

10lp

√
2
7

(
1 +

2lpr2

l3

)
.

(10)
This shows that fluctuations in z at fixed r are very small;
e.g. for r =

√
2l3/(3lp) they are given by

√
2/3 l2/(10lp).

2.2. Monte Carlo simulation

In the next section we calculate the donor-acceptor distance
distribution. In the calculation (more specifically, in
equation 14 below) we neglect the change in z-position
of the fluorophore that is attached to the DNA due to
fluctuations of the DNA, see also figure 1(b). We check
the quality of this approximation numerically by generating
configurations of the unwrapped DNA portion according to the
Boltzmann distribution, with the energy given by equation (2),
calculating the distance between the two fluorophores for
each configuration, and then binning the results to get the
fluorophore distance distribution.

More specifically, the DNA is modelled as a chain
consisting of N segments of length a = L/N and of direction
ti , i = 1, ..., N . The Hamiltonian is a discretised version of
equation 2

H = κ

a

N−1∑

i=1

(1 − ti · ti+1) (11)

where κ is given by

I3/2

(
κ

akBT

)
= I1/2

(
κ

akBT

)
e−a/lp , (12)

see [28]. For small enough segment lengths, κ approaches
the bending modulus κ that is related to the persistence
length lp via lp = κ/kBT . We take t1 = (0, 0, 1) and
generate a DNA chain by randomly generating values for
cos γi ≡ ti · ti+1, i = 1, ..., N − 1. More specifically, for
segment i we choose a bending direction φi randomly from
[0, 2π ] and we draw a random bending angle γi from the
distribution ρ(γi ) ∝ γi exp

(
−lpγ

2
i /(2a)

)
. We choose N to

be sufficiently large so that the segment length a is short
enough to use this distribution instead of the exact distribution
ρ(γi ) ∝ γi exp (κ cos γi/(akBT )).

In our Monte Carlo simulation we generate many of these
chains and measure the distance from the donor to the acceptor
to obtain a distribution of distances. We determined for each
of the three lengths (l = L = 10, 20 and 30 bp) the minimum
number of segments necessary to have results that do not
depend on N anymore and found it to be 50. For smaller
N -values the peaks are sharper (for N = 4 the peak is about
20% higher and for N = 10 about 5% higher for all three
unwrapping lengths). In the results shown in the next section,
we used N = 75 segments and 500 000 realisations for each
unwrapping length.

3. Results

3.1. Donor-acceptor distance distribution

To calculate the distribution of FRET efficiencies we need
to determine the distribution of donor and acceptor distances
first. We assume that the DNA is wrapped along a circle
of radius r0 = 4.3 nm that lies in the xz-plane in figure 1.
This is a reasonable assumption since the outer parts of the
wrapped DNA portion have a pitch angle close to zero [1]. The
fluorophore on the wrapped part (shown in green in figure 1)
is positioned at r1 = x1ex + y1ey + z1ez where we assume
(independent of the unwrapping state) that y1 = 2.5 nm. The
unwrapped portion of the DNA lies on the z-axis in the absence
of shape fluctuations, see figure 1(a). The fluorophore on the
unwrapped portion (shown in red in figure 1) is at position
r2 = z2ez (since x2 = y2 = 0). With the opening of each
binding site the length of the unwrapped portion increases by
10 bp. We keep y1, x2 and y2 fixed and set z2 = n×3.4 nm = l,
x1 = r0 [1 − cos (z2/r0)] and z1 = r0 sin (z2/r0) where n

denotes the number of open binding sites.
We calculate the distance distribution under the

simplifying assumption that the fluorophore on the DNA stays
in the plane z = z2 = l when the DNA fluctuates. Later
we compare these results, which are obtained analytically, to
numerical calculations that do not make this assumption.

As we saw in the previous section, the probability for the
centre of the DNA at l = z2 to be at x = xD and y = yD is

G (xD, yD) =
3lp

2π l3
exp

(

−
3lp

(
x2

D + y2
D

)

2l3

)

. (13)

The position of the fluorophore is then x = xD and y = yD ,
and the distance R between the donor and the acceptor is

R =
√

(xD − x1)
2 + (yD − y1)

2 + (l − z1)
2. (14)

Now let us choose xD = x1 + ρ sin θ and yD = y1 +
ρ cos θ where ρ =

√
R2 − (l − z1)

2. The Jacobian for the
transformation from (xD, yD) to (ρ, θ) is ρ so the distribution
of ρ-values Gρ is

Gρ (ρ) =
∫ 2π

0
G (x1 + ρ sin θ, y1 + ρ cos θ) ρdθ

=
3lpρ

l3
exp

(

−
3lp

(
ρ2

0 + ρ2
)

2l3

)

I0

(
3lpρ0ρ

l3

)
(15)
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Figure 3. Distribution of donor-acceptor distances for three different amounts of unwrapping. Comparison between the analytical
expression (solid lines), equation (16), and the result from the Monte Carlo simulation (dots). The inset shows the combined distribution of
distances for the three states, assuming a one kBT cost for opening of binding sites (red curve: analytical expression, black dots: Monte
Carlo simulation).

where I0 is the modified Bessel function of the first kind of

order 0, and where ρ0 =
√

x2
1 + y2

1 is the value of ρ when
the DNA does not fluctuate, i.e. when xD = yD = 0. Since
ρ =

√
R2 − (l − z1)

2 and thus R dR = ρ dρ the distribution
of donor-acceptor distances GR can easily be calculated from
equation 15, namely

GR (R) =
3lpR

l3
e−3lp(R2−(l−z1)

2+ρ2
0)/2l3

I0

(
3lpρ0

l3

√
R2 − (l − z1)

2
)

. (16)

In figure 3 we show the distribution of donor-acceptor
distances for three different amounts of unwrapping. This
plot compares the analytical expression, equation (16) with
the results from the Monte Carlo simulation. The positions
of the maxima and the full widths at half maximum agree
well for all three unwrapping length (largest deviations for
l = 30 bp: theoretical peak position shifted by 0.1 nm
compared to simulation but same full width at half maximum).
However, with increasing length there is a systematic deviation
that shows that the analytical expression underestimates the
distribution for shorter distances and overestimates it for larger
differences. This reflects our approximation z2 = l: for strong
bending of the free DNA one expects a shortening in the z-
direction, see figure 1(c), manifesting itself in the systematic
shift in the distribution. Still, the theoretical expression
gives a reasonable description even for 30 bp. The inset in
figure 3 shows the overall distribution of distances under the
assumption that the net energy per binding site is 1 kBT [7], i.e.,
that the state with n open binding sites occurs with a probability
p ∼ e−n. Note that also this combined distribution shows three
clear peaks corresponding to the three unwrapping states. As
we shall see in the next subsection this clear picture disappears
once we look at the distribution of FRET efficiencies.

3.2. FRET efficiencies

Here we calculate the FRET efficiency p (E) from the
distribution of dye–dye distances GR (R). To do so we need
to combine equations (1) and (16). First we solve equation (1)
for R leading to R (E) = R0 ((1 − E) /E)1/6. Then p (E)
follows from

GR (R) dR = G (R (E))

∣∣∣∣
dR

dE

∣∣∣∣ dE = p (E) dE. (17)

This leads to

p (E) =
lpR

2
0

2l3E2

(
E

1 − E

)2/3

e−3lp

(
R2

0(
1−E
E )

1/3−(l−z1)
2+ρ2

0

)
/2l3

(18)

I0

⎛

⎝3lpρ0

l3

√

R2
0

(
1 − E

E

)1/3

− (l − z1)
2

⎞

⎠ .

The distribution of FRET efficiencies is depicted in
figure 4(a) for the first three states of unwrapping. The state
with 10 bp unwrapped shows a sharp signal peaked very close
to E = 1 whereas for 30 bp unwrapped one finds a peak close
to E = 0. This is in sharp contrast to the signal that we predict
for the 20 bp state. Even for the ideal experimental situation
assumed here, one does not find a clear peak but instead the
distribution is smeared out over nearly the whole range of E-
values. This reflects the fact that in this case the dye–dye
distance is peaked close to the Förster radius R0 = 6.5 nm.
As the unwrapped DNA portion fluctuates, it brings the dyes
in and out of that distance. With the strong dependence of E
on R around R0, see equation (1), nearly the whole range of
efficiencies is attained. That the shape fluctuations have such
a huge effect on the FRET signal is somewhat surprising as
the unwrapped DNA segment is only 20 bp long, much shorter
than the DNA persistence length of about 150 bp.

The combined FRET efficiency for all three unwrapping
states is plotted in figure 4(b), again under the assumption

5
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Figure 4. (a) FRET efficiencies of the first 3 unwrapping states. (b) Combined FRET efficiencies where the three unwrapping states are
Boltzmann weighted assuming that each unspooling step cost 1 kBT . Comparison between theory (red curve) and simulation (black dots),
see also inset of figure 3 for the corresponding distribution of donor-acceptor distances.

that each unwrapping step costs 1 kBT . This looks vastly
different from the corresponding distribution of distances, see
the inset of figure 3. The FRET signal shows two clear peaks
connected by a broad shoulder that stems from the 20 bp state.
A comparison with experimental data, e.g. in [20] or [21],
is difficult due to various experimental complications. It
is, however, clear from our theoretical analysis that even in
the absence of these complications the distribution of FRET
efficiencies for each state, figure 4(a), is very different from
Gaussian, unlike the distribution of distances between the
donor and acceptor, figure 3. A simple geometrical model
that does not account for DNA shape fluctuations like the
one presented in [20] is useful to learn about the possible
states of the system but might suggest a wrong picture for
the distribution of intermediate FRET efficiencies.

4. Conclusion

We have calculated the effect of DNA fluctuations on the
distribution of the donor-acceptor distance in a typical FRET
experiment that studies site exposure in nucleosomes. We
found that the FRET method as a quantitative molecular
ruler is seriously hampered by the steep decay of the FRET
efficiency with distance over a very short range. On the one
hand, this means that one can detect easily two populations of
nucleosome states: open and closed. On the other hand, it is
impossible to obtain a clearly peaked intermediate FRET signal
since it will be smeared out by DNA shape fluctuations over
nearly the whole range of FRET values. To learn more about
nucleosomal states than just the binary information ‘open’
versus ‘closed’ one needs to work with various constructs
where in each case the dyes are placed at strategic positions as
has been done for example in [21].
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