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We study the complex between a colloidal particle and a semiflexible polymer chain that “wraps” around it.
Via molecular dynamics simulation we investigate statistical and dynamical properties of this system. First
we establish the dependence of wrapped chain length on absorption energy and chain persistence length and
obtain the distribution of wrapped-sphere positions. Then we study the length and position distributions of
thermally excited loop defects. Finally we consider the repositioning dynamics of the colloid, focusing on the
case where the chain stays wrapped onto the complex. Specifically we determine the mean square displacement
of the central monomer of the wrapped chain and the resulting diffusion coefficient of the chain as a function
of its persistence length, absorption energy, chain length, and size of the sphere. We argue that both statics
and dynamics of these complexes can be mainly understood by energetic arguments, whereas entropic
contributions from the chain configurations play only a minor role.

I. Introduction

The stability and the aggregation behavior of colloidal suspen-
sions in nonpolar solvents can be controlled by synthetic neutral
polymers.1 In aqueous solutions, charged polymers (polyelec-
trolytes) play a similar role.2 Particularly interesting examples
are found in living cells where charged biopolymers such as
DNA interact with macroions, e.g., proteins. Most prominently,
the complexation of DNA with histone proteins is the basis for
the reversible coordinated condensation of long eukaryotic DNA
strands of the order of centimeters into the highly compacted
chromatin complex that is confined in the micron-size nucleus.3

At the lowest point of the hierarchy of this condensation process,
DNA strands are wrapped around cylindrical histone octamers
that carry a charge opposite to that of DNA.

Systems of colloidal particles and polymers show a rather
complex phase behavior, cf., for instance, ref 4. The problem
simplifies significantly if one considers model systems that
consist of one chain and one sphere only. We will focus here
on the case of a semiflexible chain (such as DNA) where the
persistence length is of the order of or larger than the particle
size (for the case of flexible chains cf. ref 5). This problem
was first treated by Marky and Manning6 who studied the
complexation between a disklike particle and a chain due to
short-range attraction. They found that this system can be either
in a bound state where the chain wraps around the particle or
in a dissociated state. By changing the binding energy or the
persistence length of the chain one can induce an abrupt
transition from the bound to the free state.

More recent theoretical studies have refined this picture in
mainly three directions. (i) The electrostatics of such systems
was explicitly included, i.e., the complex is made from a charged
chain and an oppositely charged sphere. What all these studies

have in common is that they feature the phenomenon of
“overcharging”, i.e., the charge of the wrapped chain portion
typically overcompensates the colloidal charge.7-12 (ii ) The
unwrapping of chains (upon a change of parameters) was
investigated in detail and it was demonstrated that there exist a
multitude of more open complexes, including partially wrapped
states13,14 and rosette configurations.3,15-20 (iii ) The dynamics
of the sphere diffusionalong the chain has been studied; this,
however, exclusively in the context of nucleosomes.3,21-26

In the present work we investigate static and dynamic prop-
erties of polymer-colloid complexes using molecular dynamics
(MD) simulations. We study complexes where a semiflexible
polymer is wrapped onto a “sticky” colloid. We especially focus
on the dynamics of the colloid, namely its repositioning along
the chain, and aim at elucidating the underlying mechanism.
Before doing so, we first study related problems of the statics
of the complex, especially the positioning of the colloid along
the chain and the occurrence of loop defects. As we shall show,
the statics of this complex is governed by different mechanisms
than that of a system where a polymer and a colloid are attracted
via a long-range electrostatic interaction.7-12 Also, the reposi-
tioning dynamics of our polymer-wrapped colloid that is based
on the smoothness of the colloid surface contrasts sharply to
nucleosome repositioning along DNA, where the discreteness
of the binding site is crucial for its dynamics.25,26

The paper is organized as follows. In section II we present
our model system in detail. It consists of a semiflexible chain
and a spherical colloid that interact via a short-ranged potential.
Section III is devoted to an investigation of equilibrium prop-
erties of the wrapped complex, especially to the question of
the distribution of the sphere position along the chain. In section
IV we consider “imperfectly” wrapped states that contain loop
defects. Section V presents results concerning the diffusion of
the sphere along the chain. We study the influence of parameters
such as the ball-chain interaction strength or the chain stiffness
on the relative mobility between the two constituents of the com-
plex. In the final section we provide a conclusion and discussion.
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II. Model and Methods

This section presents our model of a polymer-colloid
complex. The colloid is modeled as a sphere of radiusR. The
polymer is a semiflexible chain made fromN monomers (i )
1 to N) of size σ with an overall chain lengthL ) σN. The
chain stiffness is characterized by a persistence lengthlp. We
assume a short-ranged attraction between the sphere and the
chain with a strengthka per monomer. The conformation of the
chain is given by the set{rbi}, with rbi being the position of
monomeri. We denote the position of the center of the colloid
by rbs. Example configurations of such complexes are depicted
in Figure 1.

The energy of each monomer is a sum of four contributions:

The first term accounts for the connectivity between nearest
neighbors that we model via a harmonic stretching potential

where â ) 1/kBT and ks denotes the dimensionless spring
constant; we chooseks ) 400 in the following. We will consider
mostly open chains, cf. Figures 1a to c. In section V we close
the chain into a ring as in Figures 1d and e; this will turn out
to be a convenient means to measure the dynamics of the sphere
along the chain. The flexibility of the chain enters through a
bending potential between neighboring monomers

where kb is the dimensionless bending constant,θ is the
complementary angle between the vectorsrbi(t) - rbi-1(t), and
rbi+1(t) - rbi(t). The bending constant is directly related to the
chain persistence length vialp ) σkb.

The third term in eq 1 accounts for the excluded volume
between any given pair of monomersi andj through a shifted,
purely repulsive Lennard-Jones potential

for ri,j < 21/6σ and 0 otherwise.ε denotes the dimensionless
Lennard-Jones constant, andri,j ) |rbi - rbj|. Finally, the short-
range attraction of monomeri to the impenetrable sphere is taken
into account via a Morse potential:

whereka is the dimensionless absorption or binding constant.

The parameterR sets the range of the potential; in the following
we always chooseR ) 6. ri ) |rbi - rbs| denotes the distance
from monomeri to the center of the sphere. The minimum of
the potential is located at distanceF ) R + σ/2.

From utotal(rbi) follows the forceFBi ) - ∇Butotal(rbi) that is
exerted on monomeri by all the other monomers and by the
colloid (neglecting hydrodynamic interactions). This force enters
directly into the Langevin equation of theith particle

wherem is its mass andê its friction coefficient.fBi is a random
thermal noise that mimics the collisions of theith bead of the
chain with the solvent molecules. The thermal noise is Gaussian
with zero mean so that〈|fBi(t)|2〉 ) 6kBTê/δt, with δt being the
time step. Here we chooseδt ) 0.02 where the time is measured
in units of the Lennard-Jones timeτLJ ) σxm/ε.

In most of the following simulations we hold the colloid fixed
in space and let only the chain move. In some simulation runs
we also allow the colloid to move according to

We assume that the mass of the colloidms is related to the
monomer massm through the ratio of their volumes asms/m )
(2R/σ)3. Furthermore, the friction coefficients of the monomers
and the sphere are assumed to follow Stokes’ law and are thus
related viaês/ê ) 2R/σ.

III. Static Properties of the Wrapped State

In this section we study the equilibrium properties of the
wrapped chain-sphere complex. As can be seen in Figure 1,
the chain can either form a wrapped, loop-free structure, cf.
Figures 1a and b, or a complex with a loop, cf. Figure 1c. In
the current section we will limit ourselves to the subset of
configurations without a loop, deferring to the next section all
structures where the complex shows a loop.

The N monomers of the chain are distributed between a
wrapped section ofNw adsorbed monomers and one or two tails,
made fromNfree monomers:N ) Nw + Nfree. A monomer is
defined as being absorbed if its center lies within a distanceR
+ δ from the center of the sphere where we chooseδ ) σ/2;
such monomers experience adsorption energies between-ka

and -ka/10 (see eq 5 withR ) 6). The number of wrapped
monomers depends on several properties of the system: the
adsorption and bending energies,ka andkb, and the colloid radius
R determining the curvature of the wrapped chain section and
the total available surface for adsorption on the ball. The other
properties, the Lennard-Jones energyε and the bond energyks,
turn out to have a negligible effect onNw.

Figure 1. Example configurations of the sphere-chain complex for two different situations: Cases a-c correspond to a wrapped chain with two
free ends while d and e show chains whose ends are closed into a ring.
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In the following we study the number of wrapped monomers
Nw as a function ofka for two different systems. System (a) has
a particle radiusR ) 2σ and chain lengthN ) 100, and system
(b) hasR ) 1.3σ and N ) 86. In both systems the bending
energy is set tokb ) 15. We equilibrate the system by making
sure that the sphere has visited both ends of the chain several
times.

Figure 2 shows the average number of wrapped monomers
Nw as a function ofka. Both cases feature a similar scenario.
For small values ofka there is no adsorption. At a certain
threshold, adsorption sets in relatively sharply. Further increase
of ka leads to a further growth of the adsorbed section up to a
point whereNw saturates. In both systems the value at saturation
is much smaller than the total chain length.

These findings can be rationalized as follows. A chain that
wraps onto a ball feels two competing effects: It gains
adsorption energy, eq 5, but it pays bending energy, eq 3. Only
if the contribution from the attraction outweighs the bending
cost, does the chain wrap. This leads to the following condition
for wrapping:

This suggests a wrapping/unwrapping transition atkcrit
a in an

“all or nothing” fashion as predicted by Marky and Manning.6

For system (a) we expect this to happen atkcrit
a ) 1.2 and for

system (b) atkcrit
a ) 2.3. An inspection of Figure 2 shows a

continuous onset of noticeable wrapping at a somewhat larger
value ofka, due to the finite temperature in our simulation. As
soon as a wrapped complex has been formed, the amount of
wrapped chain rises sharply withka.

We consider next the plateau value ofNw for largeka values.
If we forget about the connectivity of the monomers, the number
of monomers than can be packed closely in a hexagonal lattice
on the surface of the colloid is given by

We find Nmax ) 90 for system (a) andNmax ) 47 for system
(b), numbers that are significantly larger than the ones that our
simulations suggest, cf. Figure 2. Note, however, that the actual
maximal number of adsorbed monomers should be expected to
be smaller since a perfect hexagonal packing of monomers on
the ball cannot be achieved- even for unconnected entities.

Even more importantly, the chain connectivity opposes such a
tight packing since it would require sharp bends in the wrapped
portion, each bend leading to a large energy penalty.

Equation 8 predicts an “all or nothing” scenario, so one might
expect that as soon as the chain starts to wrap it immediately
reaches some saturation value. However, as can be seen in
Figure 2, the transition is less sharp. This can be explained by
the fact that only one turn of the wrapped chain (15 monomers
in system (a) and 11 in (b)) can be wrapped with the smallest
possible curvature 1/(R + σ/2). To wrap more than one turn,
the chain has to bend considerably more to avoid self-overlap.
Therefore, further wrapping is possible only for a larger chain-
ball attraction.

Next we study the position of the complexed sphere along
the chain. As the snapshots (Figures 1a and b) show, the sphere
can be located at either end of the chain, having then allNfree

monomers located in one arm, or somewhere between so that
the complex features two tails. In the following we aim to
understand whether there is a preference of the sphere position
along the chain. For this purpose we evaluate the probability
distribution of that position for several different parameter sets.
We characterize the sphere position by the index of the monomer
that represents the central monomer of the wrapped portion.

Figure 3 shows the histogram of the sphere positions along
the chain for the case where both chain and sphere are allowed
to move freely. We compare two cases: (a) weak attractionka

) 5 and (b) strong attractionka ) 8. The other parameters are
chosen as follows:N ) 100,kb ) 15, andR ) 2σ. Note that
this corresponds to two points in Figure 2, curve (a). As can be
deduced from there, the average wrapping length isNw ) 45
for ka ) 5 andNw ) 60 for ka ) 80. We find in Figure 3 in
both cases a vanishing probability for monomers with indices
i < Nw/2 and i > N - Nw/2, consistent with the fact that, by
definition, a chain sitting at one chain terminus has its middle
monomer of the wrapped portion at a distanceNw/2 from that
terminus. The profile of the curve (a) is nearly flat in the
“allowed” region Nw/2 < i < N - Nw/2, indicating that the
sphere has no preferred positions. The situation changes
dramatically when one goes to a larger adsorption parameterka

) 8. In this case, the end positions are strongly preferred which
manifests itself in peaks of the probability distributions at
positionsNw/2 andN - Nw/2.

This raises the question whether the preferences for end
positions that we observed above are caused by energetic or by
entropic effects. In first approximation there should not be any
energetic dependence of the complexation energy on the ball
position. Each adsorbed monomer contributes- kBT(ka -
kcrit

a ), cf. eq 8, independent of the ball position. In fact, Sakaue

Figure 2. NumberNw of monomers wrapped on the sphere of radius
Ras a function of the absorption energyka for a bending energy constant
kb ) 15 in two different cases: (a) open chain withN ) 100 monomers
andR ) 2σ (filled circles), (b) closed chain withN ) 86 monomers
andR ) 1.3σ (open squares).

ka > kcrit
a )

lpσ

2(R + σ/2)2
) kbσ2

2(R + σ/2)2
(8)

Nmax )
4π(R + σ/2)2

x3σ2/2
(9)

Figure 3. Probability distribution of the sphere position along the chain
with N ) 100,kb ) 15, R ) 2σ for (a) ka ) 5 and (b)ka ) 8.
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et al.,22 who also found a strong preference for end positions in
their simulation, argue that this effect is of entropic origin.

As we shall see, entropic effects are much too small to explain
the strong end preferences found in our Figure 3 and in Figure
2 of ref 22. To show this, we borrow an argument that has been
used in the study of translocation of polymers through a pore.27

This argument overestimates the entropic effect in our system,
thereby providing an upper bound for the preference for end
positions via an entropic mechanism. Consider a perfectly
flexible, ideal (Θ-solvent) chain made fromS monomers with
one of its ends grafted onto an impenetrable wall. The possible
conformations of that chain correspond to three-dimensional
random walks that can be decomposed into the directions
parallel and perpendicular to the wall. The number of chain
configurations in the perpendicular direction can be estimated
from the numberN(S) of one-dimensional random walks with
S steps that start at the boundary and never return to it:N(S)
) x2/πS × 2S for S . 1. The monomer positions in the
directions parallel to the wall are not affected by its presence
(ideal chain assumption). We make use of this boundary effect
to estimate the entropic component of distributing theNfree

monomers between the two arms of our complex. A tail made
from n monomers has a lengthnσ and is thusS ) n/kb

persistence lengths long (the fact that the persistence length is
much larger thanσ allows us here to assume ideal chain
statistics). The number of configurations in the symmetric two
tail configuration is then estimated as [N(Nfree/2kb)]2 and in the
one-tail configurationN(Nfree/kb). This leads to a difference in
the free energies

Equation 10 is reliable only for long tails (say 10lp long). For
example forNfree/kb ) 20, one finds∆F ) 1.0kBT. This means
that an end position is preferred by this amount as compared to
the position in the middle. This effect is already very small and
becomes all the more so in our case, where we deal with much
stiffer chains. In Figure 3 we haveNfree/kb ≈ 4 for ka ) 5 and
Nfree/kb ≈ 3 for ka ) 8. In these cases the entropic contribution
to the free energy will be much weaker thankBT. Moreover,
the free available space is even larger since we have here a
finite sized ball instead of an infinite wall (on which our
argument was based), i.e., eq 10 overestimates the entropic
effect.

This clearly shows that the entropy of the tails cannot explain
the strong preference for end positions as found in some of the
cases. This is especially so because the chains are so stiff that
the bending energy is much too high for a tail to bend back in
order to feel the excluded volume of the complex. In fact, the
energy of such a tail whose tip touches the complex can be
estimated from the energy of a Yamakawa Stockmeyer loop,28

namelyEYS ) 14.04kb/S (S: number of monomers). For the
longest tail considered here (ka ) 5 in Figure 3) one hasS )
55, leading already to a bending energy of 4kBT; in the other
cases the energy is even much higher. Most remarkably,
however, for the caseka ) 5 the preference for end positions is
very small whereas the caseka ) 8 shows shorter tailsand a
strong preference for end positions. This trend is in contradiction
to what one should expect from an entropic argument.

We thus believe that the preference for end positions is
enthalpic in origin. As mentioned above, each adsorbed
monomer contributes-kBT(ka - kcrit

a ) to the energy. Ifka or R
∼ (kcrit

a )-2 is increased, then the effective adsorption energy per

monomer increases. The concomitant increase of the occurrence
of end positions indicates that for such configurations more
monomers can be adsorbed. In fact, if an end monomer is
adsorbed on the ball it has more degrees of freedom as compared
to a “normal” monomer since it is not connected to tail
monomers. A tail monomer connected to an adsorbed monomer
might collide with other adsorbed monomers belonging to a
nearby winding on the sphere. We speculate that a one-tail
complex is able to accommodate roughly one monomer more
than one with two tails. This seemingly tiny effect can then
easily account for the pronounced peaks in Figure 3 whenka

increases from 5 to 8. The one-tail complex is thus preferred,
even though it is here only a tiny effect.

We note that this physical mechanism for end positioning is
in sharp contrast to positioning via long-ranged electrostatics.
When a charged semiflexible chain is wrapped onto an op-
positely charged sphere, the resulting wrapped colloid is either
over- or undercharged. An overcharged colloid is repelled from
the unwrapped chain portions and hence prefers to be located
at one end of the chain (one-tail configuration), whereas an
undercharged complex (as arises for stiffer chains) is typically
found in the middle of the whole structure surrounded by two
tails. Several computer simulations indeed find this effect.12,14,19

Also, while energetics is responsible here for the positioning,
it operates on a much longer length scale and can involve much
larger energies.

IV. Static Properties of Complexes with Loops

In the previous section we have restricted ourselves to an
analysis of wrapped chain-ball complexes and disregarded
configurations where the adsorbed chain forms a loop. Now
we study the properties of complexes that show a loop as in
the configuration depicted in Figure 1c. We present results on
the loop size distribution and on the position of the loop defined
as the index of its center monomer, both for several sets of
system properties.

We first study the length of a loop that we characterize by
the numberNloop of its monomers. The monomers of a chain in
such a complex can then be divided into three classes:Nloop

monomers that form the loop,Nw wrapped monomers, andNfree

monomers that are located in the tails. These three numbers
add up to the total chain length:N ) Nw + Nfree + Nloop.

Figure 4 presents the distributions of loop sizes for two
different cases: (a)N ) 60 monomers,ka ) 5, R ) 1.3σ, and
lp ) 15σ and (b)N ) 100 monomers,ka ) 5, R ) 2σ, and lp
) 20σ. In case (a) the probability to find a loop on the complex
is ploop ) 0.18. When there is no loop, then one has on average

∆F
kBT

) -ln(N2(Nfree/2kb)

N(Nfree/k
b) ) ) 1

2
ln(πNfree

8kb ) (10)

Figure 4. Probability distribution of the loop size withka ) 5 in two
cases: (a)N ) 60, R ) 1.3σ, kb ) 15 and (b)N ) 100, R ) 2σ,
kb ) 20.
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15 adsorbed monomers and 45 free ones (cf. also Figure 2). In
the presence of a loop we find a broad distribution of loop sizes
with a peak atNloop ) 30, cf. Figure 4. In case (b) we find a
loop with a smaller probabilityploop ) 0.13. Its preferred length
is located atNloop ≈ 40, cf. Figure 4.

These findings can be rationalized by a theory that has been
developed to describe loop formation on nucleosomes.23 The
basic idea is that a complex with a loop has a larger free energy
than a wrapped complex, mainly due to cost in the bending
energy that is stored in the loop. In addition, a complex with a
loop is able to accommodate fewer monomers on its surface.
The bending energy (in units ofkBT) scales such aslp/l loop with
l loop ) Nloopσ denoting the loop length. Hence small- to medium-
sized loops are very costly. When the length of the loop is long
enough, namely on the order of the persistence length or longer,
the bending energy becomes unimportant and the entropy of
the chain configuration,S ) (3/2) ln(l loop/lp), starts to matter.
This means that the free energy has a minimum aroundl loop )
lp, indicating the existence of an optimal loop length for that
value. The detailed analysis in ref 23, accounting for the precise
loop shapes, shows that this optimal value is actually close to
2lp. This is in excellent agreement with the value of the positions
of the peaks in Figure 4 for both values oflp.

Inspecting Figure 4 closely, one finds an additional feature
in the loop size distribution, namely an increased probability
for very small loops of lengthl loop ≈ R or smaller. This is also
found in the exact theory.23 Small loops of that kind cost mainly
desorption but hardly any bending energy. The estimate given
above for the bending energy,lp/l loop, breaks down then due to
the finite size of the ball. Such small loops have been studied
in ref 21 as possible defect structures on nucleosomes that might
induce a repositioning of the octamer along the DNA.

We analyze next the position of the loop along the chain that
we characterize by the index of the central loop monomer.
Figure 5 shows the histogram of that position for three cases.
In all cases we havelp ) 15σ. Furthermore, we choose: (a)N
) 60,R ) 1.3σ, andka ) 5, (b)N ) 100,R ) 2σ, ka ) 4, and
(c) N ) 100,R ) 2σ, andka ) 7. Case (a) corresponds to the
parameter set already studied in Figure 4 where we foundNloop

) 30 as the typical loop length. In Figure 5a, one observes that
most loops have their center between monomer numbers 20 to
40, i.e., in the middle of the chain. This is consistent with the
typical loop sizes: Since a loop can exist only between two
adsorbed chain portions, the loop cannot be situated closer to
the termini thanNloop/2.

The two cases with a longer chain ofN ) 100 monomers,
case (b) and (c) in Figure 5, show a much broader distribution
of loop positions. In the case (b) with small adsorption strength,
ka ) 4, the distribution has one broad maximum around the
centered loop. Remarkably, this maximum divides into three
peaks around 1/4, 1/2, 3/4 when the adsorption energy is
increased toward the valueka ) 7. This is reminiscent of the
peaks observed forwrapped complexes that occur at high
adsorption strength, cf. Figure 3. There we argued that the peaks
are mostly of enthalpic origin, namely that one-tail configura-
tions allow more monomers to adsorb on the ball. Presumably
we have here a similar situation. The outer peaks might again
reflect one-tail complexes, with the inner peak corresponding
to special chain conformations that allow the adsorption of an
additional monomer. A further analysis of this effect would
require a detailed study of the possible geometries of the
wrapping/loop structure that is beyond the scope of the current
work.

V. Dynamic Properties: Chain Closed into a Ring

In this section we study the diffusion of the spherealong the
chain. The general idea is to extract the corresponding diffusion
constant from the mean-squared displacement (MSD) of the
sphere position. We want to study whether the sphere can “slide”
along the chain even in the absence of loop defects, i.e., when
the complex is in a state as examined in section III.

To measure the diffusion constant there are two major
obstacles to overcome. (i) As emphasized in section IV, there
is a nonvanishing probability of loops on the complex. As
discussed in ref 23, such a loop can form on one side of the
wrapped chain portion and might then diffuse around the
complex to the other end. There the length that is stored in the
loop is released, leading to a corresponding repositioning step
of the sphere; the resulting repositioning dynamics is then
superdiffusive.23 (ii ) The chain has a finite length. As a
consequence, the MSD of the sphere diffusion along the chain
saturates when a value on the order of (σN)2 is reached.

To circumvent these problems we choose the following
strategy. (i) We discard all simulation runs during which a loop
has been created. That way we make sure that we only pick the
sphere mobility in the loop-free state of the complex. (ii ) We
close the chain into a ring. We keep track of the number of
times the sphere travels around the chain. In this way the MSD
vs. timet shows a linear behavior, with the slope being related
to the diffusion coefficient, and there is no saturation. Two
example configurations of complexes with such a closed chain
are depicted in Figure 1d and e, the latter example being a
structure with a loop defect, i.e., a structure that we would
discard in our simulation.

Figure 6 shows four examples of the MSD,〈(n(t) - n(0))2〉,
of the particle as a function of time. Here and in the following
both the chain and the sphere are free to move. In all four cases

Figure 5. Histograms of the central loop monomer number forkb )
15σ in three cases: (a)N ) 60, R ) 1.3σ, ka ) 5, (b) N ) 100,R )
2σ, ka ) 4, and (c)N ) 100,R ) 2σ, ka ) 7.
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we choseN ) 86, R ) 1.3σ, and kb ) 15. The adsorption
constantka varies as indicated in the figure. From the MSD the
diffusion constantD of the relative diffusion of the sphere along
the chain can be extracted via the relation〈(n(t) - n0))2〉 σ2 )
2Dt. As can be seen, the diffusion constant (in units ofσ2/τLJ)
varies monotonically withka, going fromD ) 0.021 forka )
4.5 toD ) 0.013 forka ) 6 (cf. also the first four columns of
Table 1).

To determine how the diffusion coefficient depends on the
properties of the system, i.e., on the adsorption energyka, the
persistence lengthlp ) σkb, the ball radiusR, and the chain
lengthN, we performed a series of simulation runs where we
varied these quantities as summarized in Table 1. The general
trends are as follows. The diffusion constant goes up with
decreasing values ofka andR and with increasing value ofkb.
There is only a weak dependence ofD on the chain lengthN.

These general trends go in the following direction: the harder
it is to desorb a monomer from the surface of the sphere at one
end of the wrapped portion, the slower is the diffusion of the
chain. The cost to unwrap a monomer has been calculated in
eq 8 to beka - kcrit

a . A repositioning step of the ball is typically
associated with the desorption of a monomer at one end and
the subsequent adsorption on the other end. The desorption step
is thermally activated and should have a typical rate proportional
to exp(-(ka - kcrit

a )). We therefore expect the diffusion con-
stant to be proportional to this factor. We check this in Figure
7 by plotting the diffusion constant againstka - kcrit

a in a
semilogarithmic plot using all the data from Table 1. The data
points indeed collapse roughly onto a line, indicating that the
monomer desorption rate governs to a large extent the mobility
of the sphere along the chain.

We note, however, that the dotted line in Figure 7 has a slope
smaller than one, namely the line is given by- µ(ka - kcrit

a ),
with µ ) 0.36. This indicates that the desorption event is less
costly than (ka - kcrit

a ), which is possible only when another
monomer is adsorbed at the same time. This points toward a

sliding of the chain along the ball where the desorption of a
monomer is compensated by the simultaneous adsorption of a
monomer at the other end of the wrapped portion. The transition
state and its energy depend on microscopic details and are
difficult to calculate. One could imagine that this state corre-
sponds to a symmetric configuration in which one monomer is
halfway desorbed and the other halfway adsorbed, cf. Figure
8. This state has indeed an energy barrier that is smaller than
(ka - kcrit

a ). For example, forka ) 5, kb ) 15, R ) 1.3σ, andR
) 6 one finds a desorption energyka - kcrit

a ≈ 2.7, whereas the
transition state during sliding is just≈ 1kBT above the wrapped
state. The exact dependence on all properties is, however,
complicated and cannot simply be taken into account via the
prefactorµ. This means that the linear dependence indicated
by the dotted line in Figure 7 can only be considered as giving
the general trend; a perfect collapse of all the data points on
that line should not be expected.

We note an additional complication associated with varying
the ball sizeR. To a first approximation the diffusion constant
should show a dependenceD ∝ ês

-1exp(-µ(ka - kcrit
a ) whereR

enters throughkcrit
a , cf. eq 8, but also through the friction

constant of the sphere,ês ) 2êR/σ. This might, for instance,
explain why the data point at lnD ≈ -3.7 andka - kcrit

a ≈ 2.6
is located above the line: this point corresponds to the smallest
sphere (R ) σ), and hence the one that shows the highest

Figure 6. MSD of the ball along the chain (in units ofσ2) against
time (in units ofτLJ) as a function of the absorption energy for four
different values ofka (as indicated in the figure). The other parameters
are chosen as follows:kb ) 15,N ) 86, andR ) 1.3σ. From the slope
of the curves we extracted the following diffusion constants (in units
of σ2/τLJ): D ) 0.021 forka ) 4.5,D ) 0.018 forka ) 5, D ) 0.015
for ka ) 5.5, andD ) 0.013 forka ) 6.

TABLE 1: Diffusion Constants (in units of σ2/τLJ) Measured for Different Sets ofka, kb, R (in units of σ), and N

ka 4.5 5 5.5 6 6 6 5 6 6.5 7 6 6 6
kb 15 15 15 15 15 15 20 20 20 20 15 15 15
R 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1 1.5 2
N 86 86 86 86 70 100 86 86 86 86 86 86 86
ka - kcrit

a 2.19 2.69 3.19 3.69 3.69 3.69 1.91 2.91 3.91 2.91 2.67 4.13 4.8
D 0.021 0.018 0.015 0.013 0.013 0.014 0.026 0.020 0.015 0.012 0.025 0.012 0.009

Figure 7. Diffusion constantD (in units ofσ2/τLJ) of the sphere motion
along the chain as a function ofka - kcrit

a . The system properties for all
data points are listed in Table 1.

Figure 8. Chain sliding as a possible mechanism underlying the
repositioning. A repositioning step by one monomer from state (a) (with
monomer A attached and monomer B detached) to state (c) (with
monomer B attached and monomer A detached) goes via an intermedi-
ate (b). In this state, both black monomers are desorbed but still feel
the attractive potential from the ball (see text).
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mobility. How strongly the sphere mobility influences the
diffusion constant of the complexed sphere along the chain
becomes especially apparent in Figure 9. Depicted is the MSD
as a function oft for the case of a mobile sphere (as used so far
throughout the present section) and of a sphere that is fixed in
space. In all cases we chooseN ) 86, R ) 1.3σ, andkb ) 15.
Whereas we found (a)D ) 0.018 forka ) 5 and (b)D ) 0.013
for ka ) 6 for the free sphere, the repositioning is considerably
reduced for the sphere fixed in space, namely (a′) D ) 0.013
for ka ) 5 and (b′) D ) 0.008 forka ) 6.

VI. Conclusion and Discussion

We treat a simple case of a colloidal particle “wrapped” by
a polymer chain, using Brownian molecular dynamics simulation
to investigate both the static properties of this system and the
diffusional dynamics of the particle changing its position with
respect to the chain without becoming unwrapped from it.

First we establish the dependence of the wrapped chain length
on absorption energy and chain persistence length and obtain
the distribution of wrapped-chain positions. This distribution
is necessarily symmetric about the chain center, and we find
that it has two peaks favoring the ends of the chain, with this
preference becoming more pronounced for shorter unwrapped
positions (“arms”). We argue that this is an energetic effect
related to a small difference in the average number of adsorbed
monomers: a complex with a single tail has slightly more space
for adsorbing monomers than a two-tail complex.

We also made an analysis of the loop formation statistics.
Our simulations confirm that the loop has a preferred size of
order two times the chain persistence length, independent of
overall chain length and absorption energy. Furthermore, the
distribution of loop positions favors the center of the chain.

Then we focus on the diffusional dynamics of the particle as
it repositions itself along the chain that wraps it. We calculate
the mean square displacement of the central monomer of the
wrapped portion of the chain, determine how the corresponding
diffusion coefficient depends on system properties, i.e., radius
of the particle, chain persistence length, overall contour chain
length, and absorption energy. From these dependencies we
conclude that the repositional dynamics is mainly governed by
detachment/attachment events of individual monomers at the
ends of the wrapped portion. This is related to the fact that the

diffusion constant is roughly proportional to exp(-µ(ka -
kcrit

a )) with ka - kcrit
a being the effective desorption energy of a

single monomer. The fact that the prefactor is smaller than one
(we find µ ≈ 0.4) shows that the barrier against repositioning
is somewhat reduced. We believe that this reflects a simulta-
neous desorption/adsorption event that results from a simple
sliding of the chain along its wrapped portion where the
desorption of a monomer at one end is balanced by the
adsorption of a monomer at the other end.

We note here that this repositioning via simple sliding is
possible only because the sphere is attracting monomers
homogeneously all over its surface. If instead the attraction were
localized at small binding patches on the sphere surface,
repositioning could occur only via different mechanisms.
Repositioning of nucleosomes along DNA is a prominent
example of localized adsorption sites.29-31 In nucleosomes, DNA
is wrapped in 1 and 3/4 turns around a cylindrical octamer of
histone proteins. The interaction between DNA and the octamer
is localized at 14 binding sites where the minor groove of the
DNA faces the octamer surface.32 Each binding site has an
adsorption energy of roughly 6kBT.3 Simple sliding, as observed
in our above ball-chain model, would involve the simultaneous
breakage of all 14 binding sites, which is energetically too costly.
It is therefore believed that repositioning takes place via
intermediate states that constitute a smaller energy barrier. Two
possible mechanism are repositioning via loop- and twist
defects.3,24 Recent experiments31 indicate that it is the latter
mechanism that most likely underlies nucleosome reposition-
ing: Base-pair twist defects (one missing or one extra basepair)
enter the wrapped portion of the DNA and diffuse through the
chain to the other end where the extra (or missing) length is
released, effectively leading to the repositioning of the nucleo-
some.25,26 This results in an overall corkscrew motion of the
cylinder relative to the DNA chain.

In view of these experiments it would be interesting to study,
along lines similar to the present paper, ball-chain complexes
with structured binding patches on the ball surface that forbid
a simple sliding of the complexed chain and to see whether
sphere repositioning still occurs and by what mechanism.
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