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We study the complex between a colloidal particle and a semiflexible polymer chain that “wraps” around it.
Via molecular dynamics simulation we investigate statistical and dynamical properties of this system. First
we establish the dependence of wrapped chain length on absorption energy and chain persistence length and
obtain the distribution of wrapped-sphere positions. Then we study the length and position distributions of
thermally excited loop defects. Finally we consider the repositioning dynamics of the colloid, focusing on the
case where the chain stays wrapped onto the complex. Specifically we determine the mean square displacement
of the central monomer of the wrapped chain and the resulting diffusion coefficient of the chain as a function

of its persistence length, absorption energy, chain length, and size of the sphere. We argue that both statics
and dynamics of these complexes can be mainly understood by energetic arguments, whereas entropic
contributions from the chain configurations play only a minor role.

I. Introduction have in common is that they feature the phenomenon of
“overcharging”, i.e., the charge of the wrapped chain portion
typically overcompensates the colloidal chafg¥. (ii) The
unwrapping of chains (upon a change of parameters) was
investigated in detail and it was demonstrated that there exist a
multitude of more open complexes, including partially wrapped
state$314and rosette configuratior$$5-2° (iii) The dynamics

The stability and the aggregation behavior of colloidal suspen-
sions in nonpolar solvents can be controlled by synthetic neutral
polymerst In agueous solutions, charged polymers (polyelec-
trolytes) play a similar rol@.Particularly interesting examples
are found in living cells where charged biopolymers such as
DNA interact with macroions, e.g., proteins. Most prominently, e . o
the complexation of DNA with histone proteins is the basis for of the sphere d|ffu5|or§1Iongthe chain has been StUd'§6d’ this,
the reversible coordinated condensation of long eukaryotic DNA however, exclusively in th.e conFext of nu_cleosor?ré&‘. )
strands of the order of centimeters into the highly compacted !N the present work we investigate static and dynamic prop-
chromatin complex that is confined in the micron-size nucfeus. €rties of polymer-colloid complexes using molecular dynamics
At the lowest point of the hierarchy of this condensation process, (MD) simulations. We study complexes where a semiflexible
DNA strands are wrapped around cylindrical histone octamers Polymer is wrapped onto a “sticky” colloid. We especially focus
that carry a charge opposite to that of DNA. on the dynamics of the colloid, namely its repositioning along

Systems of colloidal particles and polymers show a rather the cham,. and aim at. elucidating the underlying mechanlsm.
complex phase behavior, cf., for instance, ref 4. The problem Before doing so, we flrst study relz.ated.problems of the statics
simplifies significantly if one considers model systems that ©Of the complex, especially the positioning of the colloid along
consist of one chain and one sphere only. We will focus here the chain and the occurrence of loop defects. As we shall show,
on the case of a semiflexible chain (such as DNA) where the the statics of this complex is governed by d|fferen.t mechanisms
size (for the case of flexible chains cf. ref 5). This problem via a long-range electrostatic interactibri? Also, the reposi-
was first treated by Marky and Mannihgvho studied the  tioning dynamics of our polymer-wrapped colloid that is based
complexation between a disklike particle and a chain due to ©n the smoothness of the colloid surface contrasts sharply to
short-range attraction. They found that this system can be eithernucleosome repositioning along DNA, where the discreteness
in a bound state where the chain wraps around the particle orof the binding site is crucial for its dynamiés2®
in a dissociated state. By changing the binding energy or the The paper is organized as follows. In section Il we present
persistence length of the chain one can induce an abruptour model system in detail. It consists of a semiflexible chain
transition from the bound to the free state. and a spherical colloid that interact via a short-ranged potential.

More recent theoretical studies have refined this picture in Section Il is devoted to an investigation of equilibrium prop-
mainly three directions.i{ The electrostatics of such systems erties of the wrapped complex, especially to the question of
was explicitly included, i.e., the complex is made from a charged the distribution of the sphere position along the chain. In section
chain and an oppositely charged sphere. What all these studiesV we consider “imperfectly” wrapped states that contain loop
defects. Section V presents results concerning the diffusion of

IPaljt of the special issue “Irwin Oppenheim Festschrift”. the sphere along the chain. We study the influence of parameters
Universidad Veracruzana. such as the ball-chain interaction strength or the chain stiffness
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8 Universiteit Leiden. on the relative mobility between the two constituents of the com-
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Figure 1. Example configurations of the spherehain complex for two different situations: Casescacorrespond to a wrapped chain with two
free ends while d and e show chains whose ends are closed into a ring.

Il. Model and Methods The parameten sets the range of the potential; in the following
we always choose. = 6. ri = [f; — T¢| denotes the distance
from monomeii to the center of the sphere. The minimum of
the potential is located at distanpe= R + 0/2.

From u@(r;) follows the forceF; = — Vu°@(F)) that is
exerted on monomerby all the other monomers and by the
olloid (neglecting hydrodynamic interactions). This force enters
irectly into the Langevin equation of thth particle

This section presents our model of a polymeolloid
complex. The colloid is modeled as a sphere of radlu$he
polymer is a semiflexible chain made frofhmonomersi(=
1 to N) of size o with an overall chain lengthh = oN. The
chain stiffness is characterized by a persistence lelgive
assume a short-ranged attraction between the sphere and thg
chain with a strengtk® per monomer. The conformation of the
chain is given by the sefri}, with T; being the position of

monomeri. We denote the position of the center of the colloid Sl _ d?i_'_ ELT 6
by Ts. Example configurations of such complexes are depicted m a2 TS P (6)
in Figure 1.

The energy of each monomer is a sum of four contributions: wheremis its mass and its friction coefficient.f; is a random

thermal noise that mimics the collisions of ttie bead of the
chain with the solvent molecules. The thermal noise is Gaussian
with zero mean so thaffi(t)|?0= 6kgT&/ot, with ot being the
The first term accounts for the connectivity between nearest time step. Here we choos¢ = 0.02 where the time is measured
neighbors that we model via a harmonic stretching potential in units of the Lennard-Jones timg; = ovne.

In most of the following simulations we hold the colloid fixed

utotal(?i) — ustretch 4 ubend 4 zuLJ 4 uadsorb (1)

1=

o Koo in space and let only the chain move. In some simulation runs
stretc — _ — 5)?
pu r(ri—l'ri’riﬂ) B 202[(| Fi—Tial—o)+ we also allow the colloid to move according to
- - 2
r.,—rl—o 2
(| i+1 || ) ] ( ) dZT.»S dT:S+ I—:~ N ? .
where f = 1/kgT and k® denotes the dimensionless spring msdtZ =5 dt s s ()

constant; we choodé = 400 in the following. We will consider

mostly open chains, cf. Figures 1a to c. In section V we close \ye assume that the mass of the colloid is related to the

the chain into a ring as in Figures 1d and e; this will turn out ,onomer masm through the ratio of their volumes as/m =

to be a convenient means to measure the dynamics of the sphergxr;;)3. Furthermore, the friction coefficients of the monomers
along the chain. The flexibility of the chain enters through a 5nd the sphere are assumed to follow Stokes’ law and are thus

bending potential between neighboring monomers related viat/& = 2R/o.
_ o kb92 . .
ﬂubend(riil,ri,rwl) — o ©) [ll. Static Properties of the Wrapped State

In this section we study the equilibrium properties of the
where k® is the dimensionless bending constafitis the ~ Wrapped chain-sphere complex. As can be seen in Figure 1,
complementary angle between the vec( — Fi_a(t), and the chain can either form a wrapped, loop-free structure, cf.
Ti+1(t) — Ti(t). The bending constant is directly related to the Figures 1a and b, or a complex with a loop, cf. Figure 1c. In
chain persistence length vig= okb. the current section we will limit ourselves to the subset of
The third term in eq 1 accounts for the excluded volume configurations without a loop, deferring to the next section all
between any given pair of monomerandj through a shifted, ~ structures where the complex shows a loop.

purely repu|sive Lennard-Jones potentia| The N monomers of the chain are distributed between a
wrapped section dfl,, adsorbed monomers and one or two tails,
AU ) = 4e| [Z R (Ko 4) made fromNgee monomers:N = Ny + Niee A monomer is
b i i 4 defined as being absorbed if its center lies within a distdce

+ ¢ from the center of the sphere where we chodse 0/2;
for rj < 216 and 0 otherwisee denotes the dimensionless such monomers experience adsorption energies betwégn

Lennard-Jones constant, ang= [f; — Tj|. Finally, the short- and —k¥10 (see eq 5 witte = 6). The number of wrapped
range attraction of monometo the impenetrable sphere is taken monomers depends on several properties of the system: the
into account via a Morse potential: adsorption and bending energiksandk®, and the colloid radius

. R determining the curvature of the wrapped chain section and
BUPRr) = K¥exp(—2a(r; — p)) — 2expEa(r, — p))] (5) the total available surface for adsorption on the ball. The other
properties, the Lennard-Jones ene¢@nd the bond energy,
wherek? is the dimensionless absorption or binding constant. turn out to have a negligible effect d¥,.
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Figure 2. NumberN,, of monomers wrapped on the sphere of radius -t .o 3 propability distribution of the sphere position along the chain
Ras a function of the absorption enetgyfor a bending energy constant | "\~ 100 kb = 15. R = 20 for (a) k¢ =5 and (b)k* = 8
kb = 15 in two different cases: (a) open chain wih= 100 monomers ’ ’ '

andR = 2o (filled circles), (b) closed chain withN = 86 monomers . . o
andR = 1.35 (open squares). Even more importantly, the chain connectivity opposes such a

tight packing since it would require sharp bends in the wrapped
In the foIIowing we StUdy the number of Wrapped monomers portion, each bend leading to a large energy penalty.
Nw as a function ok® for two different systems. System (a) has ~ Equation 8 predicts an “all or nothing” scenario, so one might
a particle radiu = 20 and chain lengtfN = 100, and system  expect that as soon as the chain starts to wrap it immediately
(b) hasR = 1.30 andN = 86. In both systems the bending reaches some saturation value. However, as can be seen in
energy is set t&° = 15. We equilibrate the system by making  Figure 2, the transition is less sharp. This can be explained by
§ure that the sphere has visited both ends of the chain severathe fact that only one turn of the wrapped chain (15 monomers
times. in system (a) and 11 in (b)) can be wrapped with the smallest
Figure 2 shows the average number of wrapped monomerspossible curvature IR + o/2). To wrap more than one turn,
Nw as a function ok® Both cases feature a similar scenario. the chain has to bend considerably more to avoid self-overlap.
For small values of® there is no adsorption. At a certain  Therefore, further wrapping is possible only for a larger chain
threshold, adsorption sets in relatively sharply. Further increasepa|| attraction.
of k? leads to a further growth of the adsorbed section upto a  Next we study the position of the complexed sphere along
pOint Wherd\lw saturates. In both SyStemS the value at saturation the chain. As the Snapshots (Figures 1a and b) ShOW, the Sphere
is much smaller than the total chain length. can be located at either end of the chain, having theiNall
These findings can be rationalized as follows. A chain that monomers located in one arm, or somewhere between so that
wraps onto a ball feels two competing effects: It gains the complex features two tails. In the following we aim to
adsorption energy, eq 5, but it pays bending energy, eq 3. Only ynderstand whether there is a preference of the sphere position
if the contribution from the attraction outweighs the bending along the chain. For this purpose we evaluate the probability
cost, does the chain wrap. This leads to the following condition distribution of that position for several different parameter sets.

for wrapping: We characterize the sphere position by the index of the monomer
Lo o2 that represents the central monomer of the wrapped portion.
K> K= P = o (8) Figure 3 shows the histogram of the sphere positions along
2R+ 02> 2R+ ol2) the chain for the case where both chain and sphere are allowed
to move freely. We compare two cases: (a) weak attradfion
This suggests a wrapping/unwrapping transitiorkgt in an = 5 and (b) strong attractiok? = 8. The other parameters are

“all or nothing” fashion as predicted by Marky and Mannfhg.  chosen as followsN = 100, kP = 15, andR = 20. Note that

For system (a) we expect this to happerkit = 1.2 and for this corresponds to two points in Figure 2, curve (a). As can be

system (b) at;, = 2.3. An inspection of Figure 2 shows a deduced from there, the average wrapping lengt,js= 45

continuous onset of noticeable wrapping at a somewhat largerfor k2 = 5 andN,, = 60 for k* = 80. We find in Figure 3 in

value ofk?, due to the finite temperature in our simulation. As both cases a vanishing probability for monomers with indices

soon as a wrapped complex has been formed, the amount of < N,/2 andi > N — N,/2, consistent with the fact that, by

wrapped chain rises sharply wiki. definition, a chain sitting at one chain terminus has its middle
We consider next the plateau valueNyf for largek? values. monomer of the wrapped portion at a distaigg2 from that

If we forget about the connectivity of the monomers, the number terminus. The profile of the curve (a) is nearly flat in the

of monomers than can be packed closely in a hexagonal lattice“allowed” regionNy/2 < i < N — N,/2, indicating that the

on the surface of the colloid is given by sphere has no preferred positions. The situation changes

dramatically when one goes to a larger adsorption parark&ter

_4An(R+ 0/2)2 9 = 8. In this case, the end positions are strongly preferred which
max V3642 ©) manifests itself in peaks of the probability distributions at
positionsN,/2 andN — N,/2.
We find Nmax = 90 for system (a) antlmax = 47 for system This raises the question whether the preferences for end

(b), numbers that are significantly larger than the ones that our positions that we observed above are caused by energetic or by
simulations suggest, cf. Figure 2. Note, however, that the actualentropic effects. In first approximation there should not be any
maximal number of adsorbed monomers should be expected toenergetic dependence of the complexation energy on the ball
be smaller since a perfect hexagonal packing of monomers onposition. Each adsorbed monomer contributesksT(k? —

the ball cannot be achieved even for unconnected entities. k), cf. eq 8, independent of the ball position. In fact, Sakaue
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et al.22who also found a strong preference for end positions in 0.05 T I T — T T T T
their simulation, argue that this effect is of entropic origin.

As we shall see, entropic effects are much too small to explain
the strong end preferences found in our Figure 3 and in Figure
2 of ref 22. To show this, we borrow an argument that has been
used in the study of translocation of polymers through a gbre.
This argument overestimates the entropic effect in our system,
thereby providing an upper bound for the preference for end
positions via an entropic mechanism. Consider a perfectly
flexible, ideal @-solvent) chain made fror§ monomers with
one of its ends grafted onto an impenetrable wall. The possible
conformations of that chain correspond to three-dimensional
random walks that can be decomposed into the directions
parallel and perpendicular to the wall. The number of chain _ o ) ) )
configurations in the perpendicular direction can be estimated F19ure 4. Probability distribution of the loop size witk® = 5 in two

. . . cases: (AN = 60,R = 1.30, k> = 15 and (b)N = 100,R = 20,
from the number|(S) of one-dimensional random walks with ;="
Ssteps that start at the boundary and never return tol{&)

— S 11 H . . .
= V2IzS x 2° for S> 1. The monomer positions in the  ymonomer increases. The concomitant increase of the occurrence

directions parallel to the wall are not affected by its presence of end positions indicates that for such configurations more
(ideal chain assumption). We make use of this boundary effect monomers can be adsorbed. In fact, if an end monomer is

Frequency

70 80 90 100

loop size

to estimate the entropic component of distributing e adsorbed on the ball it has more degrees of freedom as compared
monomers between the two arms of our complex. A tail made g 5 “normal” monomer since it is not connected to tail
from n monomers has a lengtho and is thusS = n/k° monomers. A tail monomer connected to an adsorbed monomer

persistence lengths long (the fact that the persistence length isyight collide with other adsorbed monomers belonging to a
much larger thano allows us here to assume ideal chain pearby winding on the sphere. We speculate that a one-tail
statistics). The number of configurations in the symmetric two ¢omplex is able to accommodate roughly one monomer more
tail configuration is then estimated as(Nred2k)]? and inthe  than one with two tails. This seemingly tiny effect can then
one-tail conflgyratlon\(Nfree/kb). This leads to a difference in gasjly account for the pronounced peaks in Figure 3 widen
the free energies increases from 5 to 8. The one-tail complex is thus preferred,
even though it is here only a tiny effect.
12(Nged 2K%) aN i i i itioning i
AF _ il fre _ lln free We note that this physical mechanism for end positioning is
KT I(N (.ka) 2 | g in sharp contrast to positioning via long-ranged electrostatics.
- fre

When a charged semiflexible chain is wrapped onto an op-
Equation 10 is reliable only for long tails (say Ifong). For

(10)

positely charged sphere, the resulting wrapped colloid is either
example fomiedk? = 20, one findsAF = 1.0ksT. This means ~ OVer- or undercharged. An overcharged colloid is repelled from
that an end position is preferred by this amount as compared toth® unwrapped chain portions and hence prefers to be located
the position in the middle. This effect is already very small and &t 0ne end of the chain (one-tail configuration), whereas an

becomes all the more so in our case, where we deal with muchundercharged complex (as arises for stiffer chains) is typically
stiffer chains. In Figure 3 we haweyedk? ~ 4 for k2 = 5 and found in the middle of the whole structure surrounded by two

Nred/k? ~ 3 for k2 = 8. In these cases the entropic contribution tails. Several computer simulations indeed find this effétt.!?
to the free energy will be much weaker thiesT. Moreover, Also, while energetics is responsible here for the_posmomng,
the free available space is even larger since we have here 4t OPerates onamuch longer length scale and can involve much
finite sized ball instead of an infinite wall (on which our larger energies.
argument was based), i.e., eq 10 overestimates the entropic . . .
effect. IV. Static Properties of Complexes with Loops

This clearly shows that the entropy of the tails cannot explain  |n the previous section we have restricted ourselves to an
the strong preference for end positions as found in some of theanalysis of wrapped chairball complexes and disregarded
cases. This is especially so because the chains are so stiff thagonfigurations where the adsorbed chain forms a loop. Now
the bending energy is much too high for a tail to bend back in we study the properties of complexes that show a loop as in
order to feel the excluded volume of the complex. In fact, the the configuration depicted in Figure 1c. We present results on
energy of such a tail whose tip touches the complex can be the loop size distribution and on the position of the loop defined
estimated from the energy of a Yamakawa Stockmeyer #op, as the index of its center monomer, both for several sets of
namelyEys = 14.04ky/S (S number of monomers). For the  system properties.
longest tail considered her&?*(= 5 in Figure 3) one ha§ = We first study the length of a loop that we characterize by
55, leading already to a bending energy dfe4; in the other  the numbeNiqop Of its monomers. The monomers of a chain in
cases the energy is even much higher. Most remarkably, such a complex can then be divided into three clasdés;,
however, for the cas€ = 5 the preference for end positions is  monomers that form the loopl, wrapped monomers, amdhee

very small whereas the cag&= 8 shows shorter tailand a monomers that are located in the tails. These three numbers
strong preference for end positions. This trend is in contradiction add up to the total chain lengtil = Ny, + Niree + Nioop-
to what one should expect from an entropic argument. Figure 4 presents the distributions of loop sizes for two

We thus believe that the preference for end positions is different cases: (el = 60 monomersk? = 5, R= 1.30, and
enthalpic in origin. As mentioned above, each adsorbed I, = 150 and (b)N = 100 monomersk2 = 5, R = 20, andl,
monomer contributes-kgT(k* — K&,,) to the energy. Ik? or R = 200. In case (a) the probability to find a loop on the complex
~ (K0 ~?is increased, then the effective adsorption energy per is pop = 0.18. When there is no loop, then one has on average
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15 adsorbed monomers and 45 free ones (cf. also Figure 2). In T T T T T

the presence of a loop we find a broad distribution of loop sizes 0.06 -
with a peak atNioop = 30, cf. Figure 4. In case (b) we find a
loop with a smaller probabilitp,op = 0.13. Its preferred length
is located aiNioop =~ 40, cf. Figure 4.

These findings can be rationalized by a theory that has been
developed to describe loop formation on nucleosofidhe
basic idea is that a complex with a loop has a larger free energy
than a wrapped complex, mainly due to cost in the bending
energy that is stored in the loop. In addition, a complex with a
loop is able to accommodate fewer monomers on its surface. 0 L 1 L
The bending energy (in units &T) scales such dg/ljoop With 0 10 20 30 40 50 60
lloop = Nioopo denoting the loop length. Hence small- to medium- loop position
sized loops are very costly. When the length of the loop is long 0.03
enough, namely on the order of the persistence length or longer,
the bending energy becomes unimportant and the entropy of
the chain configurationS = (3/2) In(0ep/lp), Starts to matter.
This means that the free energy has a minimum ardggo=
lp, indicating the existence of an optimal loop length for that
value. The detailed analysis in ref 23, accounting for the precise
loop shapes, shows that this optimal value is actually close to
2l,. This is in excellent agreement with the value of the positions
of the peaks in Figure 4 for both values lgf

Inspecting Figure 4 closely, one finds an additional feature 0
in the loop size distribution, namely an increased probability 0 10 20 3 40 50 60 70 8 90 100
for very small loops of lengtheep ~ R or smaller. This is also loop position
found in, the exact theor$?. Small l,OOps of that kind Co‘?‘t ma‘”'Y Figure 5. Histograms of the central loop monomer number ko=
desorption but hardly any bending energy. The estimate given j5; in three cases: (@) = 60,R= 1.3, k*=5, (b)N = 100,R =
above for the bending energy/lioop, breaks down then due to 24, k2 = 4, and (c)N = 100,R = 20, k¢ = 7.
the finite size of the ball. Such small loops have been studied
in ref 21 as possible defect structures on nucleosomes that mighty. Dynamic Properties: Chain Closed into a Ring
induce a repositioning of the octamer along the DNA.

We analyze next the position of the loop along the chain that
we characterize by the index of the central loop monomer.
Figure 5 shows the histogram of that position for three cases.
In all cases we havig = 150. Furthermore, we choose: (i)
= 60,R=1.30, andk®= 5, (b)N = 100,R = 20, k* = 4, and
(c) N = 100,R = 20, andk?® = 7. Case (a) corresponds to the
parameter set already studied in Figure 4 where we fdligd

(a)

Frequency
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1
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0.02
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0.01

In this section we study the diffusion of the sphatengthe
chain. The general idea is to extract the corresponding diffusion
constant from the mean-squared displacement (MSD) of the
sphere position. We want to study whether the sphere can “slide”
along the chain even in the absence of loop defects, i.e., when
the complex is in a state as examined in section IIl.

To measure the diffusion constant there are two major

. ! obstacles to overcome) (As emphasized in section 1V, there
= 30 as the typical Iqop length. In Figure 5a, one observes that is a nonvanishing probability of loops on the complex. As
mos_t qups have_the|r center bet_vveen_m_onomer numbe_rs 20 Wgiscussed in ref 23, such a loop can form on one side of the
40,.|.e., in the. m|ddle.of the chain. This is consistent with the wrapped chain portion and might then diffuse around the
typical loop SI.ZGSZ $|nce a loop can exist °“'¥ between two complex to the other end. There the length that is stored in the
adsorbec_;l _chaln portions, the loop cannot be situated closer toloop is released, leading to a corresponding repositioning step
the termini thamNioop/2. of the sphere; the resulting repositioning dynamics is then
The two cases with a longer chain Nf= 100 monomers,  superdiffusive’® (i) The chain has a finite length. As a
case (b) and (c) in Figure 5, show a much broader distribution consequence, the MSD of the sphere diffusion along the chain
of loop positions. In the case (b) with small adsorption strength, saturates when a value on the order @) is reached.

@ = 4, the distribution has one broad maximum around the  To circumvent these problems we choose the following
centered loop. Remarkably, this maximum divides into three strategy. () We discard all simulation runs during which a loop
peaks around 1/4, 1/2, 3/4 when the adsorption energy ishas been created. That way we make sure that we only pick the
increased toward the valu€ = 7. This is reminiscent of the  sphere mobility in the loop-free state of the compléi). (e
peaks observed fowrapped complexes that occur at high  close the chain into a ring. We keep track of the number of
adsorption strength, cf. Figure 3. There we argued that the peakgimes the sphere travels around the chain. In this way the MSD
are mostly of enthalpic origin, namely that one-tail configura- vs. timet shows a linear behavior, with the slope being related
tions allow more monomers to adsorb on the ball. Presumably to the diffusion coefficient, and there is no saturation. Two
we have here a similar situation. The outer peaks might again example configurations of complexes with such a closed chain
reflect one-tail complexes, with the inner peak corresponding are depicted in Figure 1d and e, the latter example being a
to special chain conformations that allow the adsorption of an structure with a loop defect, i.e., a structure that we would
additional monomer. A further analysis of this effect would discard in our simulation.
require a detailed study of the possible geometries of the Figure 6 shows four examples of the MSIn(t) — n(0))2C]
wrapping/loop structure that is beyond the scope of the current of the particle as a function of time. Here and in the following
work. both the chain and the sphere are free to move. In all four cases
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Figure 6. MSD of the ball along the chain (in units oP) against
time (in units ofz.;) as a function of the absorption energy for four
different values ok?® (as indicated in the figure). The other parameters
are chosen as followsk® = 15,N = 86, andR = 1.30. From the slope

of the curves we extracted the following diffusion constants (in units
of 0?/t1;): D = 0.021 fork* = 4.5,D = 0.018 forkt=5, D = 0.015

for k2 = 5.5, andD = 0.013 fork? = 6.

we choseN = 86, R = 1.3, andk? = 15. The adsorption
constank? varies as indicated in the figure. From the MSD the
diffusion constanD of the relative diffusion of the sphere along
the chain can be extracted via the relati@m(t) — ng))20o2 =
2Dt. As can be seen, the diffusion constant (in unite#t, ;)
varies monotonically wittk?, going fromD = 0.021 fork® =
4.5 toD = 0.013 fork? = 6 (cf. also the first four columns of
Table 1).

To determine how the diffusion coefficient depends on the
properties of the system, i.e., on the adsorption enktgthe
persistence length, = okb, the ball radiusR, and the chain

Bagatella-Flores et al.
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Figure 7. Diffusion constanD (in units ofo%/z.;) of the sphere motion
along the chain as a function kf — k&;,. The system properties for all
data points are listed in Table 1.

(b)

Figure 8. Chain sliding as a possible mechanism underlying the
repositioning. A repositioning step by one monomer from state (a) (with
monomer A attached and monomer B detached) to state (c) (with
monomer B attached and monomer A detached) goes via an intermedi-
ate (b). In this state, both black monomers are desorbed but still feel
the attractive potential from the ball (see text).

lengthN, we performed a series of simulation runs where we sliding of the chain along the ball where the desorption of a
varied these quantities as summarized in Table 1. The generamonomer is compensated by the simultaneous adsorption of a
trends are as follows. The diffusion constant goes up with monomer at the other end of the wrapped portion. The transition
decreasing values &P andR and with increasing value d¢f. state and its energy depend on microscopic details and are
There is only a weak dependence®bn the chain lengtiN. difficult to calculate. One could imagine that this state corre-

These general trends go in the following direction: the harder sponds to a symmetric configuration in which one monomer is
it is to desorb a monomer from the surface of the sphere at onehalfway desorbed and the other halfway adsorbed, cf. Figure
end of the wrapped portion, the slower is the diffusion of the 8. This state has indeed an energy barrier that is smaller than
chain. The cost to unwrap a monomer has been calculated in(kt — k&,). For example, fok? = 5, k® = 15, R = 1.30, anda.
eq 8 to bek? — ;.. A repositioning step of the ball is typically = 6 one finds a desorption energy— k2, ~ 2.7, whereas the
associated with the desorption of a monomer at one end andtransition state during sliding is just 1ksT above the wrapped
the subsequent adsorption on the other end. The desorption stegtate. The exact dependence on all properties is, however,
is thermally activated and should have a typical rate proportional complicated and cannot simply be taken into account via the
to exp(—(k* — K,;)). We therefore expect the diffusion con- prefactoru. This means that the linear dependence indicated
stant to be proportional to this factor. We check this in Figure by the dotted line in Figure 7 can only be considered as giving
7 by plotting the diffusion constant againkt — K, in a the general trend; a perfect collapse of all the data points on
semilogarithmic plot using all the data from Table 1. The data that line should not be expected.
points indeed collapse roughly onto a line, indicating that the ~ We note an additional complication associated with varying
monomer desorption rate governs to a large extent the mobility the ball sizeR. To a first approximation the diffusion constant
of the sphere along the chain. should show a dependenbe] & texp(—u(kd — K&;) whereR

We note, however, that the dotted line in Figure 7 has a slope enters throughi,;,, cf. eq 8, but also through the friction
smaller than one, namely the line is given byu(kd — K,,), constant of the spheré; = 25R/g. This might, for instance,
with « = 0.36. This indicates that the desorption event is less explain why the data point at B ~ —3.7 andk® — K, ~ 2.6
costly than k2 — K&,), which is possible only when another is located above the line: this point corresponds to the smallest
monomer is adsorbed at the same time. This points toward asphere R = ¢), and hence the one that shows the highest

TABLE 1: Diffusion Constants (in units of ¢%r ;) Measured for Different Sets ofk?, k°, R (in units of @), and N

ke 4.5 5 55 6 6 6 5 6 6.5 7 6 6 6

kb 15 15 15 15 15 15 20 20 20 20 15 15 15

R 13 13 13 13 13 13 13 13 13 13 1 15 2

N 86 86 86 86 70 100 86 86 86 86 86 86 86

ke — K 2.19 2.69 3.19 3.69 3.69 3.69 191 2.91 3.91 291 2.67 4.13 4.8

D 0.021 0.018 0.015 0.013 0.013 0.014 0.026 0.020 0.015 0.012 0.025 0.012 0.009
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Figure 9. MSD (in units ofc?) of the relative diffusion between chain
and sphere as a function of time (in unitsmf). Compared here are
the cases (a,b) where the sphere is free to move af) (ghere it is
fixed in space. In all runs we stét= 86, R = 1.3s, andk® = 15. For
both cases we depict curves for two adsorption energies’) k=& 5
and (b,b) k* = 6. For the mobile sphere we find ()= 0.018 and (b)
D = 0.0183, respectively. If the sphere is fixed, the relative diffusion
between the ball and the chain is considerably smaller, nam@lp(a
= 0.013 and (h D = 0.008, respectively.

mobility. How strongly the sphere mobility influences the
diffusion constant of the complexed sphere along the chain

becomes especially apparent in Figure 9. Depicted is the MSD

as a function of for the case of a mobile sphere (as used so far

throughout the present section) and of a sphere that is fixed in

space. In all cases we chodse= 86, R = 1.3, andk? = 15.
Whereas we found (d) = 0.018 fork2 =5 and (b)D = 0.013

for k2 = 6 for the free sphere, the repositioning is considerably
reduced for the sphere fixed in space, namely a= 0.013

for kK =5 and () D = 0.008 fork? = 6.

VI. Conclusion and Discussion
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diffusion constant is roughly proportional to exp{(k® —
K2:)) with k2 — K&, being the effective desorption energy of a
single monomer. The fact that the prefactor is smaller than one
(we find u =~ 0.4) shows that the barrier against repositioning
is somewhat reduced. We believe that this reflects a simulta-
neous desorption/adsorption event that results from a simple
sliding of the chain along its wrapped portion where the
desorption of a monomer at one end is balanced by the
adsorption of a monomer at the other end.

We note here that this repositioning via simple sliding is
possible only because the sphere is attracting monomers
homogeneously all over its surface. If instead the attraction were
localized at small binding patches on the sphere surface,
repositioning could occur only via different mechanisms.
Repositioning of nucleosomes along DNA is a prominent
example of localized adsorption si#s3! In nucleosomes, DNA
is wrapped in 1 and 3/4 turns around a cylindrical octamer of
histone proteins. The interaction between DNA and the octamer
is localized at 14 binding sites where the minor groove of the
DNA faces the octamer surfaé&Each binding site has an
adsorption energy of roughhyksT 2 Simple sliding, as observed
in our above balt-chain model, would involve the simultaneous
breakage of all 14 binding sites, which is energetically too costly.
It is therefore believed that repositioning takes place via
intermediate states that constitute a smaller energy barrier. Two
possible mechanism are repositioning via loop- and twist
defects>2* Recent experimentsindicate that it is the latter
mechanism that most likely underlies nucleosome reposition-
ing: Base-pair twist defects (one missing or one extra basepair)
enter the wrapped portion of the DNA and diffuse through the
chain to the other end where the extra (or missing) length is
released, effectively leading to the repositioning of the nucleo-
some?>26 This results in an overall corkscrew motion of the
cylinder relative to the DNA chain.

In view of these experiments it would be interesting to study,

We treat a simple case of a colloidal particle “wrapped” by  ajong lines similar to the present paper, bathain complexes
a polymer chain, using Brownian molecular dynamics simulation \ith structured binding patches on the ball surface that forbid
to investigate both the static properties of this system and the 5 simple sliding of the complexed chain and to see whether
diffusional dynamiCS Of the particle Changing |tS pOSitiOﬂ W|th sphere repos|t|0n|ng s“” occurs and by What mechan|sm
respect to the chain without becoming unwrapped from it.
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