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We consider the behavior of polyampholytes~PAs; heteropolymers carrying quenched positive and
negative charges along the backbone! in external electrical fields. Whereas our previous treatments
were devoted to the regime of a weak coupling of the charges, we consider here the regime where
the electrostatic interactions between the charged monomers play the dominant role. Starting from
a fluid drop picture we estimate the critical value of the external field that induces a breakup of the
structure. As we proceed to show by scaling arguments, in strong fields the PA stretches out to a
highly extended form, for which only a small fraction of the material is still organized in mesoscopic
condensates along the rodlike configuration. ©1996 American Institute of Physics.
@S0021-9606~96!52834-5#

I. INTRODUCTION

Polyampholytes~PAs!, i.e., polymers with positively and
negatively charged monomers, have received much attention
in recent years, and the investigation of their conformational
and dynamical properties is of much current interest. A
prominent feature of PAs are the competing interactions be-
tween the charged monomers. PAs resemble in a certain way
proteins, whose structure is determined by the specific se-
quence of their monomers.1,2 From a more general point of
view PAs may be seen as soft matter counterparts to random
systems with competing interactions, such as spin glasses.3

The main emphasis of the recent work is devoted to the
investigation of the influence of the charge distribution on
the PAs’ conformational properties.4–15 Especially for ran-
dom PAs, i.e., PAs where the charges6q are distributed
randomly along the chain, the determination of the confor-
mation is a difficult task. The most important parameter here
is the excess charge: Whereas a neutral PA forms a spherical
globule, a highly charged PA behaves similarly to a poly-
electrolyte, i.e., it is highly expanded. As theoretical and nu-
merical investigations indicate, there is a critical excess
chargeQc , namelyQc ' qAN, which marks the borderline
between the compact and the expanded states.9,12

Another question that can be asked in this context is the
following: Assume one has a neutral PA in a globular state;
what is the influence of an external electrical field on this
object? Using a droplike model we show that there exists a
critical valueEc for the external fieldE, so that only above
Ec a breakup of the structure may occur. AtEc the external
force overcomes the surface tension; aboveEc the PA be-
comes highly extended. Using scaling arguments we will
show that forE>Ec only a small fraction of the monomers
remains in a ‘‘condensed,’’ globular state; we recover in this
regime our previous results for weak coupling concerning
the conformational properties of PAs in external electrical
fields.16–18

II. THE DROP ANALOGY

We consider in the following neutral PAs of polymeriza-
tion degreeN. A fraction 2f of the monomers is charged so

that one hasfN positive charges1q and fN negative
charges2q. The charges are distributed randomly along the
chain and form a quenched pattern. It is well known that
such neutral PAs collapse to spherical globules. Higgs and
Joanny6 assumed that the charged monomers arrange them-
selves in a way similar to a~micro!electrolyte. The electro-
static free energyFe is estimated in the Debye–Hu¨ckel ap-
proximation as being19

Fe

T
'2

fNlB
rD

52
~ fNlB!3/2

V1/2 . ~1!

Here T denotes the temperature in units of the Boltzmann
constantkB , lB5q2/(eT) is the Bjerrum length~with e being
the dielectric constant of the solvent!, V is the volume of the
PA globule, andrD5AV/( fNlB) the screening length.@In
Eq. ~1! and in other expressions we omit dimensionless con-
stants of order unity.#

The electrostatic part of the free energy, Eq.~1!, induces
a collapse of the PA; the excluded volume effect counteracts
these attractive forces.6 The virial expansion of the excluded
volume interaction between the monomers takes the form

F1

T
'
vb3N2

V
1
wb6N3

V2 1••• , ~2!

whereb is the monomer size andv andw are the dimen-
sionless second and third virial coefficients. Depending on
the solvent qualityv may be either positive or negative,
whereasw is, in general, positive and of order unity.

Let us first consider a chain in au solvent, wherev50;
then one obtains for the excluded volume interaction
F1'b6N3/V2. Minimizing F5Fe1F1 with respect toV,
one finds

V'b3N
b

f lB
, ~3!

i.e., this Flory-type argument predicts a collapsed PA globule
with a monomer density ofr' f lB/b

4. Note, however, that
the above given argument is only valid as long as the PA
volume, Eq.~3!, is larger than the volumeb3N of the packed
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monomers and smaller than the volume of a Gaussian coil
b3N3/2. This leads to the following condition:

f lB,b,ANf lB . ~4!

The first inequality is necessary for the applicability of the
Debye–Hu¨ckel approximation,19 the second one is the con-
dition that the electrostatic interaction dominates the thermal
agitation. In the opposite case,b . ANf lB , the charges are
coupled only weakly, so that the PA takes a Gaussian con-
formation. Since then the interaction between the charges
can be neglected, the behavior of such a chain in external
electrical fields can be treated analytically by modeling the
PA as a Gaussian chain16,17or—in the case of strong external
fields—as a freely jointed chain.18

Here we consider the opposite regime, where one has a
strong coupling of the charges, i.e.,b ! ANf lB . It was shown
by Higgs and Joanny6 that the PA can then be interpreted in
terms of the following blob picture: Consider a subchain
containinggD monomers, with

gD'S b

f lB
D 2. ~5!

Subchains of this length obey the Gaussian statistics, i.e.,
the volume given in Eq.~3! ~with N5gD! equals the volume
b3gD

3/2 of a Gaussian chain. The electrostatic free energy of
these blobs is of orderT @cf. Eq. ~1!# and their size
r5bAgD coincides with the Debye–Hu¨ckel lengthrD , i.e.,
r>rD . Assuming further that these Debye blobs form a
closely packed arrangement, one has for the volume of the
whole PA,V'(N/gD!b3gD

3/2'b3N(b/ f lB!, by which we re-
cover Eq.~3!.

The volume of the PA in a good solvent can be esti-
mated along the same lines.6 In a Flory-type approach one
has to minimizeF5Fe1F1 with respect toV. The excluded
volume part of the free energy, Eq.~2!, has to be modified by
a suitable resummation of the mean-field-like virial expan-
sion. Scaling arguments20,21predict that the excluded volume
contribution to the free energy for a polymer confined to a
volumeV is given by

F1

T
'
b3/~3n21!N3n/~3n21!

V1/~3n21! , ~6!

in which n, the Flory exponent, explicitly appears. Setting
n53

5 and minimizingF5Fe1F1 with respect toV, one finds
for the volume of the PA

V'b3NS b

f lB
D 2. ~7!

This result can be interpreted through a picture in which the
Debye blobs are swollen.6 Note that the electrostatic free
energy is of orderT for subchains of sizer'rD @cf. Eq. ~1!#.
Because of the swelling exponentn53

5, one now has
r'rD'bgD

3/5, wheregD is the number of monomers in a
blob. This, together withrD'f gDlB , gives gD'~b/ f lB!5/2.
By assuming that the whole PA is densely packed with swol-
len blobs, the volume of the PA is estimated as being
V'(N/gD!r 3, from which Eq.~7! again follows.

The above arguments lead to fixed volume conditions,
namely Eq.~3! for theu case and Eq.~7! for a good solvent.
Thus, we are concerned with incompressible PAs. Their
shapes, however, are controlled by other mechanisms: the
competition between the surface tension and the external
perturbations. The free energy of the surface is of the form

FS5gS, ~8!

whereS denotes the surface of the PA andg is the surface
tension. Following Dobrynin and Rubinstein,11 g can be es-
timated by noting that each thermal blob at the surface has
~because of missing neighboring blobs! an additional energy
of orderT. Since the radius of these blobs is of the order of
the screening lengthrD , one finds, for the surface tension,

g'T/rD
2 . ~9!

In the absence of an external electrical field the PA takes a
spherical shape to minimize its surface energy, Eq.~8!—a
situation that is reminiscent of a fluid drop. Note that the
overall neutrality is required for the spherical geometry to
hold: charged PAs are deformed and a sufficiently large net
chargeQ.Qc'qAN causes a breakup of the drop, as was
discussed by Kantor and Kardar.12

Here we consider the case of a neutral PA in an external
electrical field. Related situations are given when one applies
external electrical fields to dielectric or conducting drops
~see Ref. 22 and references therein!. Especially, a conduct-
ing, fluid drop of conductivitys1 suspended in a fluid of
conductivity s2 ~with s2,s1! behaves as follows: Under
small external fields the drop undergoes only a smooth de-
formation, under larger fields it takes a dumbbell-like shape.
Under a further increase of the field the drop lengthens rap-
idly and divides itself into two blobs connected by a thin
thread, before the final breakup occurs. Fors1@s2 the re-
sponse to the external field is different: both ends of the drop
become pointed and from them charged droplets are ejected.
The ratio of conductivities dividing these two mechanisms
lies arounds1/s2'30.

The situation of a neutral PA in an external field is re-
lated to the above. If the charges could move freely along the
chain ~the annealed case! and follow the field, a response
similar to the tip-formation mechanism would occur. Due to
the connectivity of the PA it is not possible for the system to
eject droplets, but it can lower its energy by extruding
charges along fingers at the two ends. A similar situation
may occur for a charged annealed PA, where the polymer
may lower its energy by forming charged, protruding
fingers.12

Here we are, however, interested in the usual case of
quenchedcharge distributions. Due to the connectivity of the
chain, the positive and the negative charges cannot be arbi-
trarily separated. The situation can be envisaged as follows:
Consider that the neutral PA chain is divided into two
halves; on the average they have excess charges of opposite
sign, which are typically of the orderqAfN. When a suffi-
ciently large external field is applied we expect that these
halves will rearrange themselves in a way that minimizes the
free energy. A way to achieve this is through a deformation
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of the—incompressible—PA volume, similarly to the dumb-
bell previously mentioned. Note that the fixed volume~in-
compressibility! condition is not affected by the presence of
a ~not-too-strong! external field: The major part of the mono-
mers is still organized in blobs according to the Debye–
Hückel prescription.

Here we follow a simple liquidlike model for the PA that
fulfills the fixed volume condition, Eq.~3! or Eq. ~7!. Fur-
thermore, we have to restrict the whole spectrum of possible
shapes to a reasonably small subclass. Since we expect that
for increasing external fields the PA follows similar defor-
mations as conducting drops~especially the formation of a
neck!, we start from a dumbbell-like structure, as shown in
Fig. 1~a!. It consists of two spheres of equal size that overlap
each other. We let one of them carry as total chargeqAfN,
and the other one2qAfN. This takes implicitly into account
that the charges are connected via the PA backbone. This
picture leads to an effective dipole, and to a one-parameter
family of shapes that depend—for a fixed total volume
V—only on the distanced between the centers of the spheres
@see Fig. 1~b!#. Due to its simple geometrical form this
model has the advantage of being analytically tractable~the
surface energy and the electrical potential energy of the ef-
fective dipole can be expressed analytically; see below!. We
speculate that this class of shapes represents a good approxi-
mation to the equilibrium shapes of the real PA under mod-
erate external fields; this holds good up to a critical electric
field Ec at which the whole structure breaks down; see be-
low.

To be more quantitative, we calculate now the potential
~free! energyFext of the effective dipole and the surface free
energyFS , Eq. ~8!, as a function of the distanced between
the centers. Then we have to minimizeF85Fext1FS with
respect tod. Now Fext in the external fieldE is of the form

Fext~d!52qAfNEd, ~10!

where we set, for simplicity, the dielectric constante of the
medium to be unity.

Now, to evaluateFS we need to know the surface of the
dumbbell as a function ofd, i.e., S5S(d). The surface is
simply given by the surface of the two intersecting spherical
portions. We find by simple integration

S54phR154ph~h2d/2!, ~11!

with R1 being the radius of the spheres andh5R11d/2 the
height of the portions@see Fig. 1~b!#. Furthermore,d has to
be confined to the interval

0<d<22/3R, ~12!

the lower limit corresponding to one~neutral! sphere, with
radiusR5[3V/(4p)] 1/3, the upper limit to two smaller~op-
positely charged! spheres attached at one point. Nowh has to
be chosen such that the fixed volume condition is fulfilled.
Hence, again through integration, we have

2p

3
h2~3R12h!5V, ~13!

with V being given by Eq.~3! ~u case! or Eq. ~7! ~good
solvent!, respectively. Thus we arrive at a cubic equation for
h, namely ath323 dh2/42R350, whose solution is

h5h~d!5
R

22/3 F S 11A11
d3

16R3D 2/3
1S 12A11

d3

16R3D 2/3G1
d

4
. ~14!

Series expansion of Eq.~14! to order (d/R)3 yields

h~d!>RS 11
1

4

d

R
1

1

16

d2

R2 1
1

96

d3

R3D . ~15!

Now Eq. ~15! agrees with Eq.~14! within a relative error of
0.5% over the whole range ofd values, and is hence a rea-
sonable approximation for us. From Eqs.~11! and ~15! we
obtainS as a function ofd

S~d!>4pR2S 11
1

16

d2

R2 1
1

48

d3

R3D , ~16!

where again terms of the order (d/R)4 were neglected. Now,
minimizing F85Fext1FS with respect tod @cf. Eqs. ~8!,
~10!, and~16!#, we find that

d~E!>RF S 4AfNqEpgR
11D 1/221G . ~17!

The properties of the solvent are implicitly included in Eq.
~17! throughR and g. Note that Eq.~17! characterizes the
equilibrium shape of the PA when one restricts all possible
shapes~with a given volumeV! and charge distributions~un-
der the constraint of overall neutrality! to the special class of
dumbbell-like objects depicted in Fig. 1~a!.

Inserting Eq.~17! into Eq. ~15! we find thatL, the PA
length in the direction of the field, grows withE as

FIG. 1. Neck formation of a polyampholyte globule in an external electrical
field: charge distribution~a! and geometrical parameters~b!. The pictures
display a cross section of a cylindrically symmetric dumbbell.

4252 H. Schiessel and A. Blumen: Instabilities of polyampholytes

J. Chem. Phys., Vol. 105, No. 10, 8 September 1996

Downloaded¬12¬Nov¬2002¬to¬194.95.63.241.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcr.jsp



L~E!52h@d~E!#

>R~ 5
31

5
16~11aE!1/21 1

16aE1 1
48~11aE!3/2!,

~18!

with a 5 4AfNq/(pgR). Especially forEa!1 the PA glob-
ule shows a linear response of the extensionDL5L(E)
2L(0) to the external field, namely,

DL>
AfNqE

pg
. ~19!

The dumbbell shape is, however, stable only for external
fields E up to a critical valueEc . At E5Ec the neck has
become so narrow that the PA lengthens rapidly by forming
a bridge between the two blobs. The critical value can be
estimated as follows: The radiusa of the neck is given by
a25h(2R12h)5h(h2d) @cf. Fig. 1~b!#. Thus we find from
Eq. ~15!

a2>R2S 12
1

2

d

R
2

1

16

d2

R22
1

96

d3

R3D , ~20!

where terms of order (d/R)4 were neglected. The dumbbell
becomes unstable when the external electrical field is so
large that there exists an infinitesimal deformation where the
increase of the surface energy equals the decrease in the
electrical potential. The ‘‘weak point’’ of the dumbbell is
located at the neck. When at the neck a cylindrical bridge of
radiusa and~infinitesimal! heightdL is formed, the change
in surface energy is given bydFS52pga dL, whereas we
find for the electrical potentialdFext52AfNqE dL. Thus
the dumbbell becomes unstable atE5Ec with Ec given by

2pga@d~Ec!#5AfNqEc . ~21!

Inserting Eqs.~17! and~20! into Eq.~21! results in the quar-
tic equation x412x3/3126x2 275

3 50 for x5A11aEc,
which determines the critical valueEc . Thus x>2.25, and
we obtain finally

Ec>4.06a21>3.19
gR

AfNq
. ~22!

With this result we obtain forE5Ec the geometrical param-
eters that characterize the dumbbell: they ared>1.25R,
a>0.51R, h>1.43R, andR1>0.81R.

At E>Ec the surface tension cannot counterbalance the
electrical force anymore and the PA lengthens rapidly. The
PA takes an extended configuration that we discuss in the
next section.

III. THE EXTENDED STATE

The conformational properties of the extended state for
E>Ec can be derived by using scaling arguments. We have
to modify an approach going back to Pincus23 ~cf. also Ref.
21!, which we shortly recall here. Pincus considered a single
chain under traction where the forcesF and2F are applied
to the ends. Then the elongationDL of the chain may be
written as

DL5L~F !2L5LwS Lj D , ~23!

with a dimensionless functionw. HereL5L(0) denotes the
end-to-end distance of the unperturbed chainL5bNn ~with
n53

5 in a good solvent andn51
2 in a u solvent!, andj5T/F.

Now j is a characteristic length of the problem: For smallF,
L/j!1, the response is linear inF, i.e., w(x)}x, and thus
DL}L2F/T; for largeF, L/j@1, the chain breaks up into a
string of independent blobs, each of sizej. Inside the blob
the external force induces only a small perturbation so that
one has a swollen~ideal! subchain consisting ofg5(j/b)1/n

monomers. The elongation of the whole chain is then given
as

DL>
N

g
j>H Nb

bF

T
, in au solvent,

NbS bFT D 2/3, in a good solvent.
~24!

Note that in this regime the response of the excluded volume
chain is nonlinear in the applied force.

In the following we use similar arguments to analyze
the extended state of the PA in strong fields. First, let
us mentally switch off the electrostatic interaction be-
tween the charges; as we will see later, this interaction can
be incorporated easilya posteriori. We note further that
the discussion of PAs without interactions between the
charges is interesting for its own sake, since it describes the
regimeb.ANf lB ~weak coupling limit!.16–18

We consider here neutral PAs, built out ofN monomers
(n51,2,...,N), carrying the chargesqn . Let us introduce the
cumulative charge variableQn5( i51

n qi , which denotes the
net charge of the subchain consisting of then first mono-
mers. Due to the overall charge neutrality of the PA the
remainingN2n monomers carry the net charge2Qn . Con-
sider now the force acting on the segment between the
monomersn andn11: In an external fieldE it is given by
Fn5QnE. Therefore, contrary to the original Pincus problem
we have here the situation of a nonuniform,n-dependent
force that stretches the chain. Thus we need in the following
a generalization of Eq.~24! ~strong field! for nonuniform
stretching. We follow here an argument given by Brochard–
Wyart, who considered the nonuniform deformation of teth-
ered chains in strong external flows.26 We denote by
jn5T/Fn the ~n-dependent! blob sizes, bygn5(jn/b)

1/n the
number of monomers of the blob to whichn belongs, and by
l n the position of thenth monomer in the direction of the
field. Then we find from Eq.~24! for the local deformation of
the chain atn

dln>
jn
gn

dn. ~25!

In order to simplify the calculations and to get a clearer
picture we use in the following a preaveraged charge distri-
bution. For a homogeneous random distribution of charges
along the chain the correlation between sites is given by17
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^qiqj&5H q2f , for i5 j ,

2
q2f

N21
, for iÞ j ,

~26!

where the brackets denote averages with respect to the real-
izations of theqn . From Eq. ~26! we find for the mean
squared cumulative charge variable^Qn

2&>q2f n(12n/N).
We use in the followingQ̄n5A^Qn

2& instead ofQn . Now, in
this preaveraged picture the sizes of the Pincus blobs obey

jn>
T

Af n~12n/N!qE
, ~27!

i.e., we have a series of blobs whose sizes increase toward
both ends~cf. Fig. 2!. Inserting then dependence of the blob
size, Eq.~27! into Eq. ~25!, and integrating from 0 ton, we
find for the position of thenth monomer

l n>bE
0

n/N

dx@x~12x!#~12n!/~2n!

5bBS 11n

2n
;
11n

2n
;
n

ND , ~28!

with b 5 b1/n(Af qE/T)(12n)/nN(11n)/(2n) andB being the in-
complete beta function@cf. Eq.~58.3.1! of Ref. 27#. Consider
now the deformation around one of the chain’s ends. Since
the situation is symmetric with respect to the middle of the
chain it is sufficient to consider the end that contains the
monomerk51. From Eq.~28! follows that l n}n

(11n)/(2n)

for n!N, a result that can also be found analytically for the
Gaussian chain~n51/2!.24 Note that here the deformation is
independent ofN since only the local charge distributionqk
~orQk! with k51,...,n affects the deformation at the chain’s
end. Thus, to the left of Fig. 2 the blob sizes increase with
decreasingl asjn( l )}n( l )

21/2} l2n/(11n), as indicated in the
figure; the exponent equals23

8 for a swollen chain and21
3

for an ideal chain. The scaling behavior in the middle of the
chain is different: From Eq.~28! one finds for a subchain
comprisingm monomers (m!N)

l N/22 l N/22m}mN~12n!/2n, ~29!

which is due to the typical charge fluctuations of both halves
of the chain, a result that also follows from more general
considerations.25 Hence, in the central part of the chain the

Pincus blobs have nearly the same size, namely
jn( l )}N

21/2l 0 @cf. Eq. ~27! and Fig. 2#. The shape in Fig. 2
can now be compared with the typical conformation of a
tethered chain in a strong flow.26 There the forces~blob
sizes! decrease~increase! from the grafted site to the free
end, so that the chain attains a trumpetlike shape. Our preav-
eraged PA shape is similar, having, however, two trumpet-
like ends.

To obtain the end-to-end distance we have to set in Eq.
~28! n5N and find

L>bE
0

1

dx@x~12x!#~12n!/~2n!

5b
G2@~11n!/~2n!#

G@~11n!/n#
'b, ~30!

@cf. ~43.13.1! of Ref. 27 for the evaluation of the integral#;
i.e., explicitly

L'H bN
AfNqEb

T
, in a u solvent,

bNSAfNqEbT D 2/3, in a good solvent.

~31!

For the u case we hence recover with Eq.~31! ~up to a
numerical constant! an exact result for Gaussian chains that
we have calculated recently.16,17The excluded volume chain
shows a similar nonlinear response, as in the case of a uni-
form deformation, Eq.~24!; one has simply to replaceF by
an effective force of the orderAfNqE. The deformation un-
der strong stretching in the middle part of the chain already
determines the overall size of the PA: Setting in Eq.~29!
m5N one finds the sameN dependence as forL in Eq. ~31!.
Clearly, all the results given above are only valid in the case
of strong deformations, i.e., when the sizes of most Pincus
blobs become smaller than the unperturbed size of the PA,
i.e., using the smallest blob as reference, whenjN/2!bNn.
This translates into the following condition forE:

E@E15
T

AfNqbNn
. ~32!

Let us now consider the role of the electrostatic interac-
tions between the charges. The critical electrical fieldEc @cf.
Eq. ~22!#, which is necessary to induce a breakup of the
globule, is strong enough to fulfill condition~32!, since
Ec/E1'(R/rD!~bNn/rD! is obviously much larger than
unity. The blob picture given above remains unchanged for
Pincus blobs withjn,rD . For such blobs the electrostatic
energy, Eq.~1!, is smaller thanT so that the interaction be-
tween the charged monomers is only a small perturbation.
For jn.rD each Debye blob inside the Pincus blob contrib-
utes an electrostatic free energy of the orderT, so that one
has roughlyT(jn/rD!3 for the electrostatic energy of the
whole Pincus blob. The Pincus blob of sizejn consists of a
condensed set of closely packed Debye blobs~condensate!
similar to the unperturbed situation discussed in Sec. II!.

In the preaveraged picture where the blob sizes are given
by Eq.~27! the larger Pincus blobs are located at the ends of

FIG. 2. Equilibrium conformation of polyampholytes in an external field for
a weak coupling between the charges. The PA shape for a preaveraged
charge distribution is depicted~see the text for details!.
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the chain. These are now candidates to become condensates
of Debye blobs. Consider the half-chain containing the bead
with n51. Here any given monomern may belong to a
condensate as long asjn.rD , i.e., as long asn,n1 with
n1(E) 5 @T/(Af qErD)#2. This means, however, that already
after the breakup of the PA forE5Ec only a very small
amount of the material is still found in such condensates,
since 2n1(Ec)/N'rD

2 /R2!1 holds. Thus, Eq.~31! is also in
the case of a strong coupling of charges a good approxima-
tion for L.

For a given realization$qn% of the charge distribution the
extended conformation may deviate from this ‘‘typical’’ pic-
ture. Instead of the preaveraged equation~27!, the size of the
Pincus blob around thenth monomer is given by
jn>T/(QnE). Thus, there may occur condensates of blobs
along the chain at the positionsn for which jn.rD . Espe-
cially, if the cumulative charge variableQn changes its sign
at the monomer positionn0 then one has aroundn5n0 a
condensate. A further effect that occurs at such changes of
sign is that the external force acting on the segments before
and beyondn0 changes its direction so that the PA may
become folded.

We note here that there are other systems in which
strings and globules coexist: Especially polymers that are
charged as a whole may take the form of necklaces; these
may be ordered for uniformly charged polyelectrolytes28 or
disordered for random PAs with an excess chargeQ.Qc .

12

A coil–globule coexistence may also occur when a collapsed
polymer in a poor solvent is deformed~vide infra and Ref.
29!.

Note that due to Eq.~31! one has a rather pronounced
stretching of the PA withL}N(11n)/(2n). Due to their finite
extensibility real PAs will show a crossover from this regime
to stretched configurations where the bonds are directed par-
allel or antiparallel to the external field. In the preaveraged
picture the onset of this effect is predicted to occur in the
middle of the chain whenjN/2'b, so that there the Pincus-
blob picture breaks down. This means that the field strength
E2 with

E25
T

AfNqb
~33!

marks the border between the Pincus regime, Eq.~31!
(E,E2) and the regime of stretched chain configurations
(E@E2). In Ref. 18 we have modeled the PA as a freely
jointed chain and found

L25
b2N2

3
, ~34!

for the mean-squared end-to-end distance of the stretched
chain configuration. Note thatL2 is a third of the length of
the fully stretched rodlike chain,L25b2N2. This is due to
random, zig–zag configurations that occur for certain charge
configurations, as discussed above. In our problem the Pin-
cus regime, Eq.~31!, occurs only whenEc,E2 , i.e., when
b.Nd f lB with d51

7 ~good solvent! or d51
5 ~u solvent!. To-

gether with condition ~4! this means thatNd f lB,b

,ANf lB . On the other hand, in the strong coupling case,
f lB,b,Nd f lB , the forces necessary to induce a breakup of
the structure are so strong that one is forE5Ec already
beyond the Pincus regime.

The instability atE>Ec may be first order. Here we
want to discuss similarities and differences of our problem to
a related situation where such a transition may be found: the
deformation of a collapsed polymer in a poor solvent, which
was studied by Halperin and Zhulina.29 Similar to our case
the response of the polymer for weak deformationsDL is
controlled by the surface tension so that the restoring forcef
depends linearly onDL: f}DL; this parallels Eq.~19! in the
PA problem. On the other hand, for strong deformations the
chain breaks up in a series of equally sized~ideal! Pincus
blobs resulting again in a linear relationshipf}DL; this cor-
responds in our problem to Eq.~31! ~u solvent!. For inter-
mediate deformations Halperin and Zhulina find from a scal-
ing analysis of a hypothetical cylindrical phase a (DL)21/2

dependence off , i.e., they have a van der Waals loop in the
( f ,DL) diagram, which is reminiscent of a first-order transi-
tion. Using the Maxwell equal area construction19 they pos-
tulate that in this regimef}(DL)0 and interpret this as a
region where strings and globules coexist~for instance, a
tadpole configuration!.

In our case, however, a PA globule behaves differently
under a slowly increasing field; this is due to the fact that the
field strengthED that is necessary to unravel the PA globule
~by pulling a Debye blob out of the condensate in order to
generate a string! is muchhigher than the critical valueEc

@cf. Eq. ~22!#: ED is given byAf gDqEDrD ' T, and thus
ED/Ec'(N/gD!1/2rD/R@1. Here the globule does not in-
crease its size through discharging Debye blobs, but by a
sudden breakup atE>Ec!ED . This is different from the
situation in Ref. 29 and it is due to the characteristic way in
which the PA is coupled to the external field: The force
acting on a portion of the chain containingg monomers
scales typically withg1/2 so that small parts of the chain
prefer to remain in the condensate. Thus the surface tension
controls the scenario~necklace forming! until a relatively
high field E>Ec is reached, at which the PA changes
abruptly its state. We note that the surface-controlled sce-
nario may be circumvented when the procedure is inverted,
i.e., when one starts from the highly extended state and then
decreases the field strength moderately. Then the PA may
pass through coil–globule states~hysteresis effect!. Being
beyond the scope of this paper this effect deserves further
investigation.

IV. CONCLUSION

In summary, we have considered the deformation of
neutral polyampholytes in external electrical fields in the
case of a strong coupling of the charges. Without external
perturbations a neutral PA forms a spherical globule. In
small external fields the surface free energy dominates the
PA’s response and the PA assumes a dumbbell-like shape.
When the field strength exceeds a critical value the external
perturbation overcomes the surface tension so that the PA
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becomes unstable and reaches rapidly a highly extended
stable state. In such configurations only a small amount of
the material is still bound in a few condensates, which are
connected by an inhomogeneous string of Pincus blobs.
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