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We extend our previous treatment@J. Chem. Phys.103, 5070 ~1995!# of polyampholytes~PAs,
polymers with positively and negatively charged monomers! in an external fieldE, by modeling the
PAs through freely jointed chains. Former works, based on Rouse-type models are linear, and hence
are limited to sufficiently small values ofE. The freely jointed chain model allows to consider the
PAs conformations forE arbitrary. We calculate the PAs end-to-end distance for several charge
distributions along the chain, which may be either ordered or random. For smallE we recover
previous results; largeE-values lead to a crossover to stretched chain configurations, which depend
crucially on the distribution of charges along the chain. ©1996 American Institute of Physics.
@S0021-9606~96!50514-0#

I. INTRODUCTION

The dynamical and conformational properties of charged
heteropolymers show rich behavior patterns due to the inter-
actions of the charges with each other and with applied elec-
tric fields. Polyampholytes~PAs, polymers which carry posi-
tive and negative charges! are an especially interesting class
of materials. The recent research focuses mainly on the role
of the mutual electrical interactions on the conformational
properties.1–10 Depending on different physical parameters
~i.e., on the charge distribution which can be random or regu-
lar, on the net charge of the whole chain, on the solvent
quality and on the temperature! a PA may be in a collapsed
or, conversely, in an extended configuration. In general, the
collapse of random heteropolymers is very intriguing; a par-
ticularly interesting question here are the proteins, where a
specific sequence of monomers induces their unique struc-
ture, a problem of much theoretical interest nowadays.11,12

Here we focus on the question how the PAs are affected
by external electrical fields. We consider, for simplicity, a
situation in which field-induced effects play a dominant role,
whereas the intramolecular interactions between the charged
monomers are unimportant. This situation~weak coupling of
the charges! is achieved experimentally when at the tempera-
ture T the thermal energy~measured in units of the Boltz-
mann constantkB! is much larger than the electrical energy
between neighbouring charges. Withe being the electron
charge,e the dielectric constant of the solvent andb the
monomer size the relation isT@e2/(eb). By introducing the
Bjerrum length l B5e2/(eT) the relation takes the form
b@ l B . In this limit the thermal fluctuations disrupt the effect
of the electrical interaction between the charges on the PAs
configuration; in aQ-solvent and in the absence of an exter-
nal field the PA is Gaussian. In Ref. 9 Dobrynin and Rubin-
stein have provided an even more accurate estimate of this
weak-coupling regime. Using a Flory-type argument they
find that the Gaussian conformation holds as long as

b.rANlB , ~1!

whereN is the number of monomers andr denotes the frac-
tion of charged monomers. Equation~1! can be achieved

readily by taking a solvent with a large dielectric constant;
one has for water at room temperaturel B>7 Å so that for
small r Eq. ~1! is fulfilled.

Putting PAs~in the weak coupling limit! in an external
electrical field is one way of expose portions of a polymer
chain to forces acting in different directions~tug of war!;
another way to achieve this is to consider anA–B copolymer
at the interface between the two immiscible homopolymers
A andB.13 The concentration profile at the interface between
the two phases may exhibit an extended gradient region;14,15

if the A–B copolymer is located in this gradient region, its
different monomers will feel forces in opposite directions,
quite similar to the situation of a PA in an external electrical
field.

In Refs. 16 and 17 we have calculated dynamical and
conformational properties of PAs in external electrical fields
in the weak coupling limit, Eq.~1!. There we have used
Rouse dynamics and thus assumed a linear behavior of the
forces between the charges, fact which restricts the model to
external fields which are sufficiently small. Thus for random
PAs where each monomer carries either the charge1q or the
charge2q the electrical field has to be much smaller than
10T/(qbAN).16

In this work we examine a model for PAs which can also
be used in strong external fields. We model the PA as a freely
jointed chain with a fixed bond lengthb and calculate ex-
plicitly the end-to-end distance of the PA in equilibrium. We
investigate the dependence of the PAs conformation on dif-
ferent random and nonrandom charge distributions along the
chain. For small external fields we recover the results of the
linear model of Refs. 16 and 17. For stronger external fields
we find a crossover to stretched configurations.

II. THE MODEL

Here we view the PA as consisting ofN charged beads,
connected into a linear chain byN21 links ~bonds! of fixed
lengthb. The PA is freely jointed,18 i.e., each bond is able to
point in any direction independently of the other bonds. We
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represent the chain’s conformation by the set$Rn%, where
Rn5(Xn ,Yn ,Zn) denotes the position vector of thenth bead
(n50,...,N21). Alternatively the chain’s configuration can
be represented by the set$rn% of bond vectorsrn5Rn2Rn21
(n51,...,N21) from which the positions of the beads fol-
low:

Rn5R01 (
k51

n

r k . ~2!

Furthermore we denote the charge of thenth bead byqn and
take it to be a quenched variable~i.e., the set$qn% stays fixed
for a given polymer!.

In the following we investigate the behavior of PAs in
the weak coupling limit where the interactions between the
beads can be disregarded~cf. above and Ref. 9!. Therefore
we have to account only for the influence of the external,
constant fieldE on the beads. We also introduce an external
forcef acting on the end-vectors and have as potential energy

U52ES (
j50

N21

qj DR02E(
j51

N21

qj(
k51

j

r k2f(
k51

N21

r k . ~3!

In Eq. ~3! the first term represents the potential of the total
PA charge in the external field,Qtot5(j50

N21qj . In the second
term the length of the bond vectors is fixed,ur ku[b. The third
term is introduced mainly for technical reasons; it can be
used~see below! to derive readily from the partition function
the average end-to-end vector.

Introducing the cumulative charge variable
Qk5( j5k

N21qj , the potential energy can be reformulated as

U52QtotER02 (
k51

N21

~QkE1f!r k . ~4!

In the following we restrict first our considerations to neutral
PAs for which the total chargeQtot vanishes; we implement
the extension to PAs with a nonvanishing net charge after-
wards. The interesting partition function is now

Z5E dV1 ...dVN21 exp~2U/T!

5 )
k51

N21 E dVk exp@~QkE1f!r k /T# ~5!

in which the integrations run freely over the directionsVk of
the r k-vectors. Introducing spherical coordinates (uk ,wk)
and taking the reference axis of theuk parallel toE we obtain
in standard fashion,

Z5~4p!N21)
k51

N21
sinh@~QkE1 f !b/T#

~QkE1 f !b/T
. ~6!

Note that the partition function in Eq.~6! is identical to
the partition function ofN21 independent dipoles~with
chargesQk and2Qk at distanceb! in an external electrical
field E or, equivalently, to that ofN21 magnetic dipoles in
an external magnetic field, i.e., a classical paramagnetism
problem.19 This similarity can be understood as follows:
Consider the bond connecting the beadsk21 andk of the

PA. The bond subdivides the chain in two parts, one consist-
ing of the beadsn50,...,k21 with total charge2Qk , the
other one consisting of the beadsn5k,...,N21 with total
chargeQk . The external fieldE acts on the net charges of
this two parts, which are connected by a bond of fixed length
b and hence display the effective dipolebQk .

We proceed further by calculating the end-to-end dis-
tance. In the following we take theY-axis in the direction of
the fieldE,

E5~0,E,0!. ~7!

By setting further f5~0,f ,0!, the thermally averaged
Y-component of the end-to-end vectorP(t)5RN21(t)
2R0(t) can be evaluated by differentiatingZ with respect to
f ,18 i.e.,

PY5TS 1Z ]Z

] f D U
f50

5T
]

] f
ln Zu f50 . ~8!

Here the dash denotes the thermal average. Inserting Eq.~6!
into Eq. ~8! we find for the end-to-end distance in the
Y-direction,

PY5b(
k51

N21 Fcoth~QkEb/T!2
T

QkEb
G

5b(
k51

N21

L~QkEb/T!. ~9!

In Eq. ~9! L(x)5cothx21/x is the Langevin function;19

L(x) shows the following approximate behavior:

L~x!>H 1 for 1!x
x/32x3/45 for 21!x!1
21 for x!21

. ~10!

Using these limiting expressions for small and large external
fields, PY can be immediately given. For small fieldsE,
E!T/~b max$Qk%!, one has

PY5
b2E

3T (
k51

N21

Qk , ~11!

i.e., the extension of the PA is proportional to the field
strengthE. For large fields, i.e.,E@T/(bq), we find from
Eqs. ~9! and ~10! for the end-to-end distance in field direc-
tion,

PY5b~n12n2!. ~12!

Heren1 denotes the number ofQk with Qk.0 andn2 the
number ofQk with Qk,0. Equation~12! results from the
fact that in strong external fields all links with a nonvanish-
ing effective dipole moment are directed parallel or antipar-
allel to the external field. Bonds withQk50 are not affected
by the external field and their contribution toPY vanishes in
the thermal average.

Let us introduce the susceptibilityx 5 ]PY/]E. It fol-
lows from Eq.~11! that x}T21 for E→0. This dependence
corresponds to the Curie law of paramagnetism, i.e., the
magnetizationM in a small external magnetic fieldB obeys
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xM[]M /]B}T21. This follows here directly from the
physical analogy mentioned above. ForE largePY is inde-
pendent ofE, i.e., x50, since one has a stretched situation
@cf. Eq. ~12!#; in the magnetic picture this corresponds to the
saturation of dipoles in a strong externalB-field.

We turn now to PAs with a nonvanishing total charge. In
this case the center of mass~c.m.! moves under the influence
of the field. In Refs. 16, 17 we have calculated for different
charge distributions the c.m. drift motion under friction. Here
we are interested in the internal deformations of the polymer
and therefore we choose the c.m. as reference, whose posi-
tion is Rc.m.5R01(k51

N21(N2k)r k/N. The potential energy,
Eq. ~4!, can be rewritten as

U52QtotERc.m.~ t !2E(
k51

N21

~Q̃kE1f!r k . ~13!

In Eq. ~13! Q̃k is a transformed charge variable defined by

Q̃k5Qk2
N2k

N
Qtot . ~14!

As usual the first term in Eq.~13! represents the total exter-
nal force acting on the c.m. whereas the second term de-
scribes the energy of the internal conformations~with fixed
c.m.!. The thermal average over the internal conformations
of a PAwithQtotÞ0 may be computed following the lines for
a neutral PA by changing fromQk to Q̃k ; this change corre-
sponds to a change in the individual charges fromqk to
q̃k5qk2Qtot/N.

III. FIXED CHARGE DISTRIBUTIONS

In this section we discuss charge distributions with given
fixed patterns. As a first example let us consider the case
where only the end-beads are charged, namelyq052q,
qN215q andqk50 else. From this we find for the cumula-
tive charge variableQk5q for k51,...,N21. Using Eq.~9!
we find for the end-to-end distance in the direction of the
field

PY5b~N21!L~qEb/T!

>HqEb2~N21!/~3T! for E!T/~qb!

b~N21! for E@T/~qb!
. ~15!

Here the crossover from the linear regime to the fully
stretched case is described by one Langevin function. This is
a well-known result for the extension of a freely jointed
chain when forces act on its end-beads only@see, for in-
stance, Eq.~65! of Chap. VIII of Ref. 18#.

Now we consider the case of alternating PAs where
qk5(21)k11q. PAs with even and odd numbers of mono-
mers have to be treated separately and, interestingly, show
totally different conformations in strong external fields. For
evenN the PA is neutral. The cumulative charge variable
fulfills

Qk5 H q for k odd
0 for k even. ~16!

From Eq.~9! we find for the end-to-end distance

PY5b (
k odd

L~qEb/T!

>H ~qEb2N!/~6T! for E!T/~qb!

bN/2 for E@T/~qb!
. ~17!

In the limit of small external fields one finds a stretching
term proportional toN which coincides with our previous
findings@cf. Eq.~42! of Ref. 17#. For large external fields the
end-to-end distance is half that of a fully stretched chain.
This can be understood as follows: Due to Eq.~16! every
second bond has a nonvanishing dipole moment. Only these
N/2 bonds orient in theE-field, each contributing to the end-
to-end distance a lengthb. The remaining bonds may point
in any direction without changing the energy of the PA, i.e.,
one has a highly degenerated ground state.

Now we turn to the case of alternating PAs with an odd
number of monomers. Then the PA has a net charge
Qtot52q and the c.m. moves in the external field. The cu-
mulative charge isQk50 for k odd andQk52q for k even.
Transforming according to Eq. ~14! we have
Q̃k5Qk1(N2k)q/N and thus

Q̃k5 H ~N2k!q/N for k odd
2kq/N for k even . ~18!

This results in a vanishing thermal average of the end-to-end
distance

PY5b (
k52,4,...

N21

LS 2
k

N

qEb

T D1b (
k51,3,...

N22

LSN2k

N

qEb

T D[0.

~19!

In Eq. ~19! each term of the first sum is exactly cancelled by
a term of the second sum so thatPY is zero, regardless of the
magnitude of the external field. Furthermore, due to the al-
ternating signs of theQ̃k @cf. Eq. ~18!# the PA takes a zig–
zag configuration in an external electrical field. Note that in a
strong field all bonds are directed parallel to the field, point-
ing in alternating directions@cf. Eq. ~19!#, so that the PA
collapses.

Summarizing, we find in our model~weak coupling
limit, i.e., neglect of intrachain interactions! the following
remarkable behavior for alternating PAs: In an external field
the chains will stretch forN even~with a highly degenerated
ground state! and will collapse forN odd to a single ground-
state configuration. In other words: Even if the number of
monomers is very large, the conformation of a PA withN
monomers is strongly different from that of a PA withN11
monomers.

IV. RANDOM CHARGE DISTRIBUTION

This section is devoted to PAs whose charges are ran-
domly distributed along the chain. In such cases the calcula-
tion of the end-to-end vector is more complicated since one
has to perform the average with respect to the different real-
izations of the charge distribution. Let us first calculate the
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mean-squaredend-to-end distance for a given fixed charge
distribution. Using a similar procedure as in Eq.~8! we have
now to differentiateZ twice, and obtain

PY
25T2S 1Z ]2Z

] f 2 D U
f50

5T2
]2

] f 2
ln Zu f501T2S ]

] f
ln Z u f50D 2. ~20!

Inserting Eq.~6! renormalized according to Eq.~14! into Eq.
~20! we find

PY
25b2~N21!1b2(

k51

N21

(
lÞk

L~Q̃kEb/T!L~Q̃lEb/T!

22b2(
k51

N21
L~Q̃kEb/T!

Q̃kEb/T
. ~21!

Now, for random charge distributionsPY
2 has to be averaged

with respect to the realizations of$qk%, and we denote this
average by brackets,^•••&. Hence we have either to evaluate
^ln Z& @cf. Eq. ~20!# or forms such aŝL(c1Q̃k)L(c2Q̃l)& @cf.
Eq. ~21!#, both of which are difficult tasks.

Using the approximate expressions for the Langevin
function, Eq.~10!, we can calculatêPY

2& from Eq. ~21! in
the limits of weak and of strong fields. Following this strat-
egy we find for weak fields,

^PY
2&>

b2~N21!

3
1
b4E2

9T2 (
k51

N21

(
lÞk

^Q̃kQ̃l&

1
2E2b4

45T2 (
k51

N21

^Q̃k
2&. ~22!

For strong fields we find from Eqs.~10! and ~21!,

^PY
2&5

b2

3
^n0&1b2^~n12n2!2&. ~23!

Heren1 , n2 , andn0 denote the number ofQ̃k with Q̃k.0,
Q̃k,0, andQ̃k50, respectively@cf. also Eq.~12!#.

In the following we consider random PAs with an uncor-
related distribution of charges. Assume that each monomer is
either positively or negatively charged, i.e.,qk56q and that
^qkql&5q2dkl . This implies automatically that the average
of the total charge vanishes, i.e.,^Qtot&50. A given chain,
however, is not necessarily neutral so that one has to trans-
form the charge distribution according to Eq.~14!, from
which we find

^q̃kq̃l&5K S qk2 (
i50

N21

qi /ND S ql2 (
j50

N21

qj /ND L
5q2dkl2q2/N. ~24!

In Ref. 17 we have also investigated PAs whose charges
are placed randomly along the chain, under the constraint of
global neutralityQtot50. The correlationŝ qkql& for this
case@cf. Eq. ~59! of Ref. 17# are for largeN approximately

the same as the correlations^q̃kq̃l& of Eq. ~24!. Thus the
following considerations are also valid in the case of neutral
PAs.

To evaluatê PY
2& in the limit of small external fields we

need the correlations of the cumulative charge variablesQ̃k .
From Eq.~24! we find for k> l ,

^Q̃kQ̃l&5 (
i5k

N21

(
j5 l

N21

^q̃i q̃ j&5q2
~N2k!l

N
. ~25!

Inserting Eq.~25! into Eq. ~22! we find forN@1 and in the
limit of small fields,E!T/(bqAN),

^PY
2&>

b2N

3
1
q2E2b4N3

108T2
. ~26!

Besides the usual Gaussian term proportional toN we find an
additional field-induced stretching proportional toN3. This
result coincides with our expression for the end-to-end dis-
tance in equilibrium, which we have calculated based on the
Rouse model@cf. Eq. ~20! of Ref. 16#. In Ref. 16 we also
give a Flory-type argument for theN3-dependence of the
stretching term.

Let us now turn to large external perturbations. Accord-
ing to Eq.~23! one has to know the probability distributions
of n1 , n2 , andn0. For N large these distributions can be
deduced from results of random walk theory. Note that the
set$Q̃k% can be interpreted as being the path of a Brownian
particle starting atQ̃050 and arriving afterN elementary
steps q̃k (k50,...,N21) at Q̃N2150. It is a well-known
result that for such Brownian bridges the sojourn times on
the positive side, i.e.,n1 , or on the negative side, i.e.,n2 ,
are equally distributed~cf. the equidistribution theorem of
Sec. III 9 of Ref. 20!. Ignoring ^n0& which is of orderAN we
thus have for the probabilityp1 ~p2! of having n1 ~n2!
steps on the positive~negative! sidep15p25N21. Thus we
find from Eq. ~23! for the end-to-end distance for large ex-
ternal fields,E@T/(bq),

^PY
2&>

b2

N (
k50

N

~2k2N!25
b2N2

3
. ~27!

Thus the mean-squared end-to-end distance is a third of the
squared length of a rodlike chain. This is due to the fact that
typically some bonds are in the direction of the field~n1

ones! whereasn2 bonds are directed opposite to the field,
resulting in a random, zig–zag configuration.

V. CONCLUSION

In this work we have evaluated analytically the confor-
mation of freely jointed PAs in external fields. This takes into
account the finite extensibility~anharmonicity! of the chain.
We calculated explicitly the end-to-end distance and find
with increasing strength of the external fieldE a crossover
from a regime linear inE to a stretched,E-independent situ-
ation. Furthermore, the end-to-end distance strongly depends
on the distribution of charges along the chain. The confor-
mation of alternating PAs in strong external fields is
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highly sensitive to the numberN of monomers. ForN odd
the PA collapses, whereas forN even the PA becomes ex-
tended.
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