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Due to the sequence-dependent nature of the elasticity of DNA, many protein-DNA complexes and
other systems in which DNA molecules must be deformed have preferences for the type of DNA
sequence they interact with. SELEX (Systematic Evolution of Ligands by EXponential enrichment)
experiments and similar sequence selection experiments have been used extensively to examine the
(indirect readout) sequence preferences of, e.g., nucleosomes (protein spools around which DNA is
wound for compactification) and DNA rings. We show how recently developed computational and
theoretical tools can be used to emulate such experiments in silico. Opening up this possibility comes
with several benefits. First, it allows us a better understanding of our models and systems, specifically
about the roles played by the simulation temperature and the selection pressure on the sequences.
Second, it allows us to compare the predictions made by the model of choice with experimental
results. We find agreement on important features between predictions of the rigid base-pair model
and experimental results for DNA rings and interesting differences that point out open questions
in the field. Finally, our simulations allow application of the SELEX methodology to systems that
are experimentally difficult to realize because they come with high energetic costs and are therefore
unlikely to form spontaneously, such as very short or overwound DNA rings. Published by AIP

Publishing. https://doi.org/10.1063/1.5001394

I. INTRODUCTION

Over the past 25 years, SELEX (Systematic Evolution of
Ligands by EXponential enrichment) experiments have proven
a valuable tool in identifying DNA and RNA sequences with
high affinity for a large range of target molecules. This affinity
can be based on any number of properties of the nucleic acids,
such as sequence-specific binding of the target or an RNA’s
ability to form stem loops. SELEX experiments have found
many of their applications in clinical research: to examine
the tendency of prospective therapeutic compounds to target
specific genomic sequences or designing RNA molecules that
themselves interfere with the functioning of certain pathogens.
(For a review, see Ref. 1.)

We will focus on the basic mechanics (elasticity and intrin-
sic shape) of double-stranded DNA molecules and their conse-
quent affinity for certain complexes in which the DNA needs
to be deformed. Various DNA-binding proteins are known to
have DNA affinities that are dependent on the intrinsic cur-
vature and stiffness of the underlying nucleotide sequence,
such as the catabolite activator protein,2 the TATA-binding
factor,3–5 and other parts of the transcriptional machinery,6–8

as well as regulatory9–12 and architectural proteins.8,13

However, the archetypical example is the nucleosome, a
protein spool around which genomic DNA in eukaryotes is
wrapped in order to compactify it.14 The positioning of these
protein spools along a genome influences the packaging of
the DNA and thereby the expression of genes, as wrapped-up
DNA cannot readily be read out.15 Since DNA needs to
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be strongly bent in order to wrap into a nucleosome, the
nucleosomal structure has a preference for sequences that facil-
itate this deformation. This leads to significant effects of the
underlying DNA sequence on the positioning and dynamics of
nucleosomes.16

In this context, SELEX experiments have been used to
look for DNA sequences with high affinity to the nucleo-
some17–19 (as well as the archaeal “nucleosome”20). In similar
endeavors, the SELEX method has been used to look for
intrinsically curved sequences21 and to assess the sequence
preferences of DNA rings.22

In such SELEX experiments, a pool of random DNA
molecules is synthesized (either fully randomly or ran-
domly drawn from genomic sequences23), and these random
molecules are mixed with molecules of the target type, com-
peting to bind to them. The DNA molecules with the highest
affinity will be the most likely candidates to bind to the targets.
After some time, the DNA-target complexes are extracted from
the mixture, leaving behind a fraction of the DNA molecules
that have a lower average affinity and keeping a fraction with
higher affinity.

By repeating this process in multiple rounds, the selec-
tive pressure on the DNA sequences increases and we
end up with a smaller and smaller pool of higher and
higher affinity sequences. In such a manner, the Widom 601
sequence19 of high nucleosome affinity was discovered, and
the dinucleotide probability distributions of DNA rings were
mapped.22 Although not the same on a technical level, similar
experiments have been used to map the sequence preferences
of nucleosomes.24–29 Mapping such preferences is not only
an interesting goal in itself but these preferences can also
be used to model sequence-dependent nucleosome affinity.
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Such models can in turn be employed to gain insight
into the mechanical signals encoded into genomic DNA
sequences.25,27,30,31

Recently, a computational method has been published that
also enables mapping of such sequence preferences.32 Dubbed
Mutation Monte Carlo (MMC), the method utilizes standard
Monte Carlo simulations to sample the Boltzmann distribution
associated to a modeled DNA system such as the nucleosome
and adds as a novel feature Monte Carlo moves that mutate the
DNA sequence. Given a suitable model of the system of inter-
est, this technique allows an understanding of the sequence
preferences of the system from a theoretical point of view.

The MMC method shares many similarities with the
experimental SELEX method. It samples DNA sequences
based on their affinity to the target. Doing so at constant
finite temperature delivers probability distributions for, e.g.,
dinucleotides (as in Refs. 30, 32, and 33), and by perform-
ing simulated annealing it searches for the sequence with the
strongest affinity (Refs. 33 and 34), much as attempted in
Ref. 19, leading to the 601 sequence.

However, there is also a major difference between the
in silico method and the experimental protocols. The MMC
simulation is performed at a particular temperature, which
determines how stringently it selects for low-energy states
and hence for high-affinity sequences. This temperature is
necessarily shared by both the configurational moves that sim-
ulate the thermal fluctuations of the system and the mutations.
In a SELEX experiment, however, the selection pressure is
determined by, among other factors, the number of rounds
of selection performed, and the strength of selection on the
sequences is decoupled from the temperature at which the
experiment is performed. Despite the similarities, this means
that a MMC simulation cannot be directly taken as an in silico

SELEX experiment.
Here we bridge this difference, such that we may apply

selective pressure in silico at will regardless of the simula-
tion temperature. To do so, we must examine in detail the
role played by temperature in the MMC method, which we
will do in Secs. II and III. Considering MMC simulations of
both nucleosomes and DNA rings, we will find in Sec. IV
that the importance of the temperature varies from system to
system.

With the tools in hand to perform simulated SELEX exper-
iments, we first emulate the experiment performed by Rosanio
et al. for rings.22 In Sec. V, we elucidate the fundamental differ-
ences between the (out-of-equilibrium) experiment of Rosanio
et al. and our idealized equilibrium statistics to show that a
comparison is useful. After affirming this, we perform the
in silico selection in Sec. VI, and we find both broad agreement
and some striking differences between the theoretical predic-
tions and the experimental results. Finally, in Sec. VII, we
apply our SELEX simulations to tight and overwound rings,
which would be difficult to treat experimentally due to the
lower rate of the formation of such systems.

II. SELEX AND MMC

In a SELEX experiment, DNA molecules compete to bind
to target molecules or, in the case of DNA rings, to form

closed rings in a limited amount of time.22 The probability of
a molecule with sequence S to be bound to the target instead of
another molecule, assuming equilibrium conditions, is propor-
tional to the Boltzmann weight of that molecule’s free energy
when bound to the target,

P(S) =
1
Z

e

��F(S), (1)

where Z is the partition function, i.e.,
P

S

e

�F(S)/k

B

T .
A single round in a SELEX experiment is then very sim-

ilar to a MMC simulation. When we run a MMC simulation,
we are sampling system configurations, i.e., combinations of
sequences and spatial configurations (S, ✓), according to their
Boltzmann distribution,

P(S, ✓) =
1
Z

e

��E(S,✓)�( f

c

(✓)). (2)

The normalization is provided by the partition function Z,
obtained by integrating the numerator over all spatial degrees
of freedom and summing over all sequences. In this equation,
we have added a delta function to encode for the constraints
on the system. In a nucleosome, there are constraints on the
spatial degrees of freedom that bind the DNA to the histone
core. In a DNA ring, the molecule is constrained to form a
loop. The exact form of these constraints may be complex and
is captured here by a general constraint function f

c

.
When we speak of the affinity of a sequence to a nucle-

osome or a ring, we do not make reference to any particular
spatial configuration. Rather we want to take all of them into
account; we need the probability of a given sequence to form
a nucleosome or ring, considering the probabilities of all the
possible spatial configurations the DNA may take. Then what
we wish to calculate is the marginal probability distribution of
the sequences,

P(S) =
⌅

d✓P(S, ✓) =
1
Z

⌅
d✓e��E(S,✓)�( f

c

(✓)). (3)

This integral will not generally be tractable. In the current
work, we rely on the rigid base-pair (RBP) model35 to provide
the energy function E(S, ✓). This energy function is quadratic
in the degrees of freedom, making the integral above a Gaus-
sian integral under constraints. This may be solvable for very
simple constraint functions, but in general we need to resort
to numerical methods such as MMC.

Assuming we have a method to evaluate P(S), we can
consider the free energy of a given sequence

P(S) =
1
Z

e

��F(S) ! F(S) = � 1
�

(log(P(S)) � log(Z)) . (4)

The partition function is generally difficult to determine.
In what follows, we will neglect its contribution, meaning that
we determine the free energy only up to a constant offset. Sim-
ilarly, we will simply normalize our probability distributions
as required and drop overall factors from our equations.

However, besides this caveat, we are determining the
same quantities as we would in a SELEX experiment, at
least when considering only a single round. In Sec. III, we
address simulating SELEX experiments consisting of multiple
rounds.
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III. AN EFFECTIVE TEMPERATURE FOR MUTATIONS

As noted, the probability of a given sequence to survive a
SELEX round depends on its free energy when bound to the
target. Assuming a fraction f is kept after a round of SELEX,
the survival probability of a sequence S is

Psurv(S) = fe

��F(S). (5)

For the sequence to survive multiple rounds, assuming
selection criteria are constant from one round to the next, we
multiply this probability with itself,

Psurv,n(S) = f

n

e

�n�F(S) = f

n

e

��0
m

F(S). (6)

The fraction f can, in the case of DNA forming nucleo-
somes or other complexes, be constrained to be smaller than
1 by mixing together a surplus of DNA molecules with the
target proteins.

Apart from the scaling with a sequence-independent pref-
actor, we see that applying n rounds of SELEX is equivalent
to introducing an effective temperature, T ! T

0 = T/n. We
call this an effective temperature, since it only applies to the
selection of the sequences. In what follows, we will therefore
distinguish between �

m

, the inverse temperature that is applied
to sequence selection (i.e., the mutations in our MMC simu-
lation), and �

s

, the inverse temperature of the spatial degrees
of freedom. In Eq. (6), the actual physical temperature of the
system is not altered. We wish to replicate this effect in our
MMC simulations.

The free energy in Eq. (4) depends on the simulation tem-
perature and, as noted in the introduction, this temperature
governs both the selection of sequences and the selection of
spatial configurations during the simulation. However, there
is nothing to stop us from tweaking the temperature after
marginalizing out the spatial degrees of freedom. If we wish to
calculate P(S) at some temperature T

0 other than the simulation
temperature T, we may simply write

P

T

0
m

(S) = e

��0
m

F(S) =
⇣
e

��
m

F(S)
⌘�0

m

/�
m

= P

T

m

(S)�
0
m

/�
m , (7)

where the temperature subscript to P(S) denotes an effective

temperature for the mutation moves only. Note that this is
distinct from changing the actual simulation temperature, in
which case we must write

P

T

0(S) =
⌅

d✓e��
0
E(S,✓)�(f

c

(✓)) (8)

=

⌅
d✓(e��E(S,✓))�

0/��(f
c

(✓)). (9)

The question of how this expression scales with T

0

does not have a straightforward answer and depends on the
constraints placed upon the system, as we will see.

Assuming we can calculate P(S), Eq. (7) allows us to
decouple the selective pressure on the sequences from the sim-
ulation temperature, in a manner entirely analogous to how a
SELEX experiment introduces an effective temperature for the
sequence selection. Furthermore, we are not restricted to tem-
peratures that are integer fractions of the physical temperature;
we may choose T

0 as we like, even a temperature larger than
the physical one.

IV. EFFECTIVE TEMPERATURE AND SEQUENCE
PREFERENCES

For Eq. (7) to be of use, we need a tractable way to
calculate P(S). The MMC method enables us to sample the
Boltzmann distribution in sequence space for the system of
interest, but sampling the full space of all possible sequences
is still an impossible task for systems like the nucleosome, due
to the large number of sequences.

The standard way of gaining insight into the sequence
preferences of a system is by considering the probability dis-
tributions of short subsequences in the full sequence, most
commonly those of dinucleotides,22,25–27,32,33 which is a far
more tractable problem. Those distributions capture much of
the information about a system’s preferences, and they can in
fact be employed in calculating the affinity of sequences, if
we make some simplifying assumptions. Following Refs. 25
and 30, we assume only short-range correlations in the
sequence preferences of our systems, such that we may write

P(S) = P(S1)P(S2 |S1)
NY

i=3

P(S
i

|S
i�1 \ S

i�2), (10)

where S

i

are the individual nucleotides that make up the DNA
sequence. This expression for P(S) (the trinucleotide model
from Ref. 30) assumes that the probabilities of the individ-
ual nucleotides are only strongly correlated with their nearest
and next-nearest neighbours, i.e., the probability of S

i

depends
only on S

i 1 and S

i 2. This assumption was extensively tested
in Ref. 30. Using Eq. (10), we may sample the probability
distributions of trinucleotides in our MMC simulation and
from there calculate the probability or free energy of an entire
sequence.

With this method for calculating P(S) in hand, we can
now gather an ensemble of sequences at a different muta-
tion temperature by running a MMC simulation in sequence
space only, but where we reject or accept mutations (within
the Metropolis-Hastings algorithm) based on the adjusted
probabilities given by Eq. (7).

From this new sequence ensemble, we can then once again
derive dinucleotide distributions to study. Comparing the dis-
tributions found using this method, with the original ones from
the single-temperature MMC simulation, we may assess sep-
arately the effects of changing the mutation temperature and
the spatial temperature.

We modeled DNA using the rigid base-pair model35 with
the standard hybrid parameterization.36 We ran MMC simula-
tions of nucleosomes (modeled using the Eslami-Mossallam
nucleosome model32) and rings (modeled by connecting the
first and last base pairs of the DNA using the standard
sequence-dependent elasticity of the rigid base-pair model)
at three different temperatures: room temperature, 1/2 of room
temperature, and 1/4 of room temperature. Then we used the
method just described to independently alter the mutation
temperature. The results are presented in Fig. 1.

The distributions for A/T-rich dinucleotides (a common
set to study due to the strong preferences shown by the nucle-
osome for the positions of these dinucleotides) for the ring and
the nucleosome show an interesting difference. In Figs. 1(d)–
1(f), we see that the distributions we find for the ring depend
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FIG. 1. Distributions for AT-rich dinucleotides (AA, AT,
TA, and TT) along the nucleosome [(a)–(c)] and the ring
[(d)–(f)] biased by the locking sequence from Rosanio
et al.,22 for different combinations of mutation tempera-
ture (�

m

) and spatial temperature (�
s

). The distributions
are grouped by mutation temperature in order to illumi-
nate the different effects of spatial temperature on the
preferences of the nucleosome and the ring. The effect of
multiple rounds of SELEX would be to raise �

m

while
keeping �

s

constant, so one would consider the curves of
the same color in successive plots.

strongly not just on the mutation temperature �
m

but also on
the spatial temperature �

s

. For the nucleosome, however, we
see in Figs. 1(a)–1(c) a strong dependence on �

m

but a far
weaker dependence on �

s

.
This difference can be understood in terms of the entropic

contribution to the free energies of the systems. Considering
a given sequence S, its free energy has a contribution from
the average internal energy of a system and from the entropy
(denoted here by ⌃ to distinguish it from the sequence S),

F(S) = hE(S)i � T

s

⌃(S), (11)

where T

s

is the spatial temperature, as we are considering the
system with a given sequence S.

Since the entropy is a measure of the part of the configu-
ration space that can be accessed with reasonable probability
by the system, it in principle depends on the sequence. For
example, for a completely free DNA molecule, a stiff sequence
will limit the possible spatial configurations of the molecule
more than a sequence that bends very easily. Changing the
spatial temperature affects the accessible part of state space,

and hence the contribution T

s

⌃(S), in a sequence-dependent
manner.

The average energy hE(S)i also depends on temperature,
but in a straightforward, sequence-independent manner. It rep-
resents the internal potential energy plus the thermal energy,
simply given by the equipartition theorem,

hE(S)i = E0(S) +
N

2
k

B

T

s

, (12)

where N is the number of degrees of freedom.
The dependence of the sequence preferences of DNA rings

we find in Figs. 1(d)–1(f) is thus an entropic effect. At lower
temperatures, the ring will be constrained to a smaller set of
configurations, but how many depends on what the stiffness of
the DNA sequence allows. Hence, lowering the spatial temper-
ature increases the differences in affinity between sequences,
leading to the larger amplitudes in Figs. 1(d)–1(f).

For the nucleosome, the effect is much smaller. Appar-
ently, the entropic contribution T

s

⌃(S) is not strongly
sequence-dependent in this case. This was expected: because
the nucleosome is a strongly constrained system, the part of
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configuration space that the DNA is allowed to sample is deter-
mined to a much larger degree by the constraints on the system
than by the elastic properties of the DNA itself. This was
already anticipated in studies including Refs. 32 and 37, where
the entropic contribution to the free energy of the nucleosome
was neglected entirely. Using our new methodology, we are
able to directly verify that this assumption is justified. How-
ever, we must conclude that the assumption does not hold for
systems that are not as tightly constrained as the nucleosome,
such as, for instance, DNA rings.

V. AN IN SILICO SELEX EXPERIMENT FOR RINGS

Having developed the methodology to perform SELEX
experiments in silico, we would like to compare the results
of such computational treatments to experimental results. The
most promising experiment to compare with is that of Rosanio
et al.,22 the only experiment making use of completely random
sequences for which the statistics we are interested in have
been reported.

Rosanio et al. performed a SELEX experiment in which
fragments consisting of 126 base pairs of DNA were made to
cyclize into rings. Linear DNA fragments randomly sample
bent configurations due to thermal fluctuations, and if the two
ends of a fragment meet, a ligation reaction may fuse them
together, creating a closed ring. The probability of a given
DNA fragment cyclizing depends on its affinity to form a ring:
a stiff sequence is less likely to cyclize and survive a selec-
tion round than an easily bendable one; the same holds for
an intrinsically straight molecule compared with an intrinsi-
cally bent one. To gain insight into the sequence preferences of
rings, Rosanio et al. fixed 36 of the 126 base pairs to contain a
predetermined sequence with a known preference for bending
in one direction. This biased the direction of ring formation,
such that the preferences of a ring bent in a specific direction
could be mapped.

We wish to mimic this experiment in silico by performing
a MMC simulation of a DNA ring, with 36 base pairs fixed to
the same sequence used by Rosanio et al., and the rest free to
mutate. We found that the RBP model correctly captures the
fact that the 36-base-pair locking sequence biases the bending
direction in the ring. Figure 2 shows histograms of the rota-
tional states (measuring the rotation of the ring around its own
backbone) of DNA rings with locking sequences, and the other
90 base pairs made into homogeneous (sequence-averaged)
DNA without a coherent bending preference, sampled during
a standard Monte Carlo simulation. We define the rotational
state as the signed angle between a vector perpendicular to
the ring at an arbitrary point and the plane in which the ring
(approximately) lies. The top panel shows the results using the
Rosanio sequence; the bottom uses the artificially designed,
very strongly intrinsically bent sequence from Ref. 34. The
fixed sequences significantly bias the ring to a subrange of
rotational states; the artificially designed sequence biases far
more strongly than does the Rosanio sequence, for which rea-
son we will employ it later on. As a side remark, note that
for the Rosanio sequence, the energy landscape as a function
of the rotational angle shows an interesting asymmetry: it is
ratchet-shaped. As explained in Refs. 38 and 39, a DNA ring

FIG. 2. Histograms of rotational states (around its length axis) of an RBP
DNA molecule forced into a ring, sampled during a standard Monte Carlo
simulation, for two separate locking sequences consisting of 36 base pairs. The
bias introduced using the sequence from Rosanio et al.

22 is shown in the top
panel. The bottom panel shows the bias produced using an arbitrarily selected
36-base-pair subsequence of the strongly curved 84-base-pair sequence from
Ref. 34.

with such a feature can be made to twirl around its backbone
via a periodic change in temperature, thus acting as a molecular
motor.

Before we present the results of our MMC simulation of
the Rosanio et al. experiment, it is instructive to first discuss
some significant differences.

Ideally, as discussed around Eq. (5), in a SELEX experi-
ment, the survival probability is Boltzmann-distributed. In the
cyclization assay, the DNA fragments are initially in rapid
equilibrium with circular and oligomeric forms (not yet cova-
lently linked), until this equilibrium is trapped by the ligase.
This, however, does not automatically ensure that the sur-
vival probability is Boltzmann-distributed, as we show in the
following.

The rate at which cyclization happens is proportional to
the Boltzmann factor of the sequence

r

C

= r

C

(S) = ⌫
C

e

��F(S), (13)

where r

C

is the cyclization rate and ⌫
C

is the attempt frequency
of cyclization. DNA fragments can also be ligated to each
other, causing dimerization and taking the fragments out of
the pool of fragments attempting cyclization. (We are neglect-
ing further multimerization of the dimerized fragments, which
further increases the rate of dimerization of free fragments.)
Assuming that the dimerization process is a second-order reac-
tion and defining [L], [C], and [D] as the concentrations of
linear, cyclized, and dimerized fragments, respectively, and
r

D

as the sequence-independent rate constant for dimerization,
the reaction kinetics are given by40

d[C]
S

dt

= r

C

(S)[L]
S

, (14)

d[D]
S

dt

= r

D

[L]2
S

, (15)

d[L]
S

dt

= �r

C

(S)[L]
S

� r

D

[L]2
S

. (16)
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In Eqs. (14)–(16), we have explicitly written out the
dependence on sequence with subscripts S. These equa-
tions hold for the concentrations of fragments with a given
sequence, and we will for now only consider one sequence at
a time. Therefore, in the following, we will drop the explicit
subscripts.

In reality, the kinetics of fragments with different
sequences are coupled because fragments may dimerize with
fragments that do not have the same sequence. This means
that the dimerization is much stronger than what is suggested
by Eqs. (14)–(16). However, this additional dimerization is
sequence-independent, and we will see that the dimerization
component does not alter the qualitative behavior of the sys-
tem. A qualitative characterization will be sufficient for our
purposes.

This system has been treated before in the linear regime.40

When considering different sequences with potentially very
different cyclization rates, as well as different ligation times,
as in the experiment of Rosanio et al.,22 we may no longer
be able to assume that the linear regime is valid. We therefore
look for a full solution.

The probability of surviving a selection round is the prob-
ability of being cyclized at the end of the round, which is by
definition

P(t) =
[C](t)

[C](t) + [D](t) + [L](t)
=

[C](t)
L0

, (17)

where L0 is the concentration of free fragments at t = 0.
Equations (14)–(17) can be solved to yield

P(t) = � r

C

r

D

L0

(
r

C

t + log
 

r

C

r

C

+ r

D

L0

!

� log
 
e

r

C

t � r

D

L0

r

C

+ r

D

L0

!)
. (18)

The most important properties of this probability distribu-
tion can be understood in the limit of negligible dimerization
(which can be physically achieved using a very low concentra-
tion of fragments). Without dimerization, the kinetics in Eqs.
(14)–(16) simplify considerably, and Eq. (18) reduces to

P(t) = 1 � e

�r

C

t , (19)

which makes clear the saturation behavior of the probability
in time. Equation (19) is plotted for different values of r

C

in
Fig. 3(a).

That this saturation must occur in the experiment of
Rosanio et al.

22 follows from the values reported in Table 1
in that reference. In the last round of selection, the popula-
tion consists of quickly cyclizing sequences, of which 10%
is cyclized after 10 s. That means that these sequences must
start to saturate within about 2 min, and hence these sequences
certainly reached saturation in for instance the first selection
round, which lasted 30 min.

In our model, we find that the free energies of the
sequences vary over a multi-k

B

T range, and as a conse-
quence the Boltzmann factors vary over several orders of
magnitude. This means that the speed with which Eq. (19)
saturates to 1 also varies over several orders of magnitude.
This leads to a sharp division between high-affinity and low-
affinity sequences: after some time, there will be a part
of the sequence population that is not undergoing selection
any longer. Sequences with small enough free energy (small
enough being dependent on the ligation time) all essentially
have probability 1 to survive. Sequences with worse affinity
are not “guaranteed” to survive and most will not be selected.

This behavior is clearly visible in the probability distribu-
tions imposed on the sequence space (determined by the free
energies of the sequences), shown in Fig. 3(c). The probabil-
ity distribution shows a population of sequences guaranteed to
survive, a population almost guaranteed not to, and a drop-off
from one to the other over a span of about 4 k

B

T.
The shape of the drop-off resembles the Boltzmann distri-

bution, as we see when we choose the cutoff time so low that no
sequences saturate. In fact, in the limit t ! 0, we find a linear
regime for Eq. (19) where the probability becomes propor-
tional to the Boltzmann weight; unfortunately, the constant of
proportionality is linear in t and therefore the efficiency of the
experiment in this limit also goes to zero. (This is exacerbated
by the fact that this is only true for negligible dimerization,
meaning that the concentration of fragments in the experi-
ment must be very low as well.) We may therefore hope that,
apart from the lack of selection on the saturated sequences,

FIG. 3. Saturation behavior in the out-of-equilibrium selection method of Rosanio et al.

22 (a) Survival probability as a function of time, without dimerization,
for values of r

C

spanning several orders of magnitude. (b) As (a) with strong dimerization (r
D

/r
C

= 100). The saturation probability and how quickly it is
approached change, but the overall character is similar. (c) Probability distributions imposed on the sequence space. If the probability is not allowed to saturate,
the distribution (red dotted-dashed, green dotted-dotted-dashed curves) is similar but not identical to the Boltzmann distribution (blue solid curve). Also shown
are the distributions for t = 0.5 with dimerization (light green curves), in which case the saturation probability is reduced, but the overall shape of the distribution
is maintained. The free energy range is fictive, arbitrarily chosen for the purpose of illustration, but realistic.
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FIG. 4. Dinucleotide distributions along a ring with the Rosanio sequence, obtained from a MMC simulation at room temperature, emulating a single round of
SELEX. The dinucleotides have been grouped as in Figs. 3(d)–3(f) in Ref. 22.

the selection is not qualitatively different from an equilibrium
selection.

Before we show that this is the case, note that the behavior
of the system in the presence of dimerization is very similar
to the behavior without dimerization. In Fig. 3(b), we see that,
while the saturation probability and the rapidity with which the
probability approaches it are both altered by the dimerization,
the overall character of the plots is similar. This is also evinced
by the probability distribution in sequence space in the pres-
ence of dimerization, shown in Fig. 3(c) (light green curves).
The saturation probability is different (and this is irrelevant for
the competition between sequences), but the overall shape of
the distribution is the same.

Let us quickly remark that the behavior we describe is
actually realistic. In Fig. 3, we chose an arbitrary range of
free energies to illustrate the behavior. However, we do see
free energies in our model varying over roughly a range of
this magnitude. More importantly, the experiment of Rosanio
et al.

22 also evinces this behavior, as shown in Fig. 2 in that
reference. This figure shows that in each round, a large per-
centage of fragments remain linear, meaning that in each case,
the selection time was chosen such that not all sequences
saturate. These reaction times vary over several orders of mag-
nitude, and the fact that at each of these selection times a
meaningful selection is taking place (the probabilities do not
saturate, nor go to zero) means that the Boltzmann weights
of the sequences must indeed vary over several orders of
magnitude.

We must also make a remark as to the behavior of the
system under multiple rounds of selection. Performing one
round with time t, and one with ⌧, we calculate the probability
to survive both rounds as the product of the probabilities to
survive either round, and we find

P(t, ⌧) = 1 � e

�r

C

t � e

�r

C

⌧ + e

�r

C

(t+⌧). (20)

If t and ⌧ are comparable, we obtain various order terms, the
lowest of which will dominate. For simplicity, assume t = ⌧;
then

P(t, t) = 1 � 2e

�r

C

t + e

�2r

C

t . (21)

In the limit of small t, we retrieve the equilibrium statistics (by
expanding the expression above to leading, i.e., second, order).
If we are not in this limit (which, as explained above, is likely),
the effect of the second round of selection is more subtle: the
closer we are to saturation, the less effect the number of rounds
has, since it only affects terms that tend to zero. In general, we
find a weaker effect on the strength of the selection than in the
equilibrium case [Eq. (6)].

If the ligation times of different rounds vary a lot, Eq. (20)
will simply be dominated by the smallest ligation time. In that
case, performing multiple rounds achieves little.

The question is how much the results of the experimental
selection and our equilibrium simulation diverge. It turns out
we can take the out-of-equilibrium case to an extreme, model-
ing it as a hard cutoff on the free energies of the system and still
have a minor effect on the measured dinucleotide preferences
of the system.

FIG. 5. Like Fig. 4, but rather than sampling according to the Boltzmann distribution, sequences were selected using a hard cutoff in the free energy [as calculated
using the model from Eq. (10) and Ref. 30]. The cutoff was placed approximately at the 99th percentile of the free energies (keeping only 1%).
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In order to emulate an equilibrium SELEX version of the
experiment of Rosanio et al.,22 we performed a MMC sim-
ulation of a closed DNA ring, modeled via the RBP model
with the standard hybrid parameterization.35,36,41 As in the
SELEX experiment, we chose a ring with 126 base pairs,
of which 36 were fixed to be the locking sequence from
Ref. 22. The rest of the DNA was allowed to mutate. By
sampling sequences during the simulation, we obtained a ther-
mal sequence ensemble, from which we calculated the din-
ucleotide probability distributions shown in Fig. 4. Because
we found, in Eq. (20) and onward, that the effect of multiple
rounds of selection is small, we only simulated one round of
selection.

We use oligonucleotide distributions calculated from the
sequence ensembles as input for the approximation of Eq. (10).
Using this approximation, we performed a second simula-
tion where we generated random sequences and selected or
discarded them using a hard cutoff on the free energy. The
resulting dinucleotide distribution is shown in Fig. 5. We see
that the calculated distributions are highly similar to each other,
indicating that indeed, selecting via a Boltzmann distribution
or via a hard cutoff, both lead to very similar results. Therefore,
in practice, the out-of-equilibrium nature of the experiment of
Rosanio et al. does not make for a large difference with the
equilibrium scenario.

VI. RING SEQUENCE PREFERENCES IN VITRO
AND IN SILICO

The dinucleotide distributions we find in silico show
both similarities and differences with those found by Rosanio
et al.

22 [compare Figs. 3(d)–3(f) in that reference]. First, the
periodicities in the distributions, which derive from the helical
nature of DNA, are very similar. The A/T-rich dinucleotides
[Fig. 4(a)] are all in phase with each other, while the G/C-
rich dinucleotides [Fig. 4(b)] are exactly out of phase with the
former. The phasing of the other dinucleotides, shown in the
three groups in Fig. 4(c), all show phasing resembling those
found experimentally. For a full comparison of the phases, see
Fig. 6(a).

However, one interesting deviation is the slight (1-bp) dif-
ference in phasing among the A/T-rich dinucleotides. Whereas
Rosanio et al. find all of them peaking at exactly the same posi-
tion, we find that AA generally peaks one base pair to the right
of AT and TA, and TT one base pair to the left. This shift in the
AA and TT dinucleotides seems to be caused by the overall
preference for the TA step over the AT step. The TA step can
be flanked on the left by TT but not AA and on the right by
AA but not TT. This preference of the ring is analogous to the
nucleosome’s preference for the TTAA tetranucleotide at the
positions along the nucleosome where the minor groove faces
inward32,42 and is therefore not unexpected.

The experimental distributions do not see this prefer-
ence for the TA step over the AT step, which brings us to a
more general difference between our theoretical results and
the experimental distributions. Remarkably, the experimental
probabilities never deviate very far from the uniform dinu-
cleotide probability of 1/16. In our simulations, this is not
the case: the probabilities take on values from around 0.04,

FIG. 6. Comparison between the experimentally found sequence preferences
of the DNA ring and those predicted by our model. (a) The relative phases of the
oscillatory signals. Here the experimental results and theoretical predictions
generally agree to within one base pair. (For TG and CA, where the phases do
not match, our model predicts no discernible oscillations, and hence the phase
is poorly defined.) (b) The absolute deviations of the average probabilities
of the sixteen dinucleotides from the uniform value 1/16. The experimental
probabilities mostly oscillate closer to the uniform value than the theoretical
ones.

up to around 0.12. This does not occur only locally, but
several dinucleotides have an average probability, along the
entire ring, significantly different from the uniform value, see
Fig. 6(b).

The uniformity of the experimentally obtained distribu-
tions is surprising. It is known, for instance, that the affinity of
nucleosomes to sequences correlates with GC content. There-
fore, e.g., the enrichment we observe of the CG and GC
dinucleotides is not unexpected. More generally, there is no
reason to expect all the dinucleotides to have probabilities close
to 1/16.

This discrepancy between theoretical prediction and
experiment could have several reasons. It may be a failure of
the RBP model or its parameterization, which have been tested
most extensively in the context of nucleosomes. It is possi-
ble that rings are less similar to nucleosomes than one might
expect and that the model does not capture the difference.
For example, Rosanio et al. find longer-range correlations in
their sequences. The RBP model contains such interactions
only indirectly, due to the thermal nature of the system and
the constraints placed on the DNA, but microscopically only
accounts for nearest-neighbor interactions. There is much evi-
dence that the RBP model is an oversimplification in this
regard.43–48

Other potential causes exist on the experimental side. For
instance, the experiment of Rosanio et al. employed differ-
ent ionic conditions than those that are generally used for
nucleosome reconstitution experiments. Ionic conditions are
known to affect DNA elasticity.49 In particular, Rosanio et al.

used a significant concentration of magnesium, whose ions
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are known to strongly affect DNA mechanics.50,51 Such dif-
ferences in experimental conditions may contribute to the
observed differences.

Another potential suspect is the fact that the experimental
selection process only had access to a limited set of sequences,
whereas the MMC algorithm can access all of sequence space.
We might expect this to limit the ability of the experiment to
select for coherent sequence properties like GC content and
correctly phased dinucleotides. However, this possible cause
is ruled out by the results presented in Fig. 5. It shows the
dinucleotide preferences of high-affinity sequences selected
from a pool of only ⇠107 random sequences, far smaller than
the library constructed experimentally (1013 sequences). How-
ever, the results still exhibit the same non-uniform dinucleotide
probabilities. Therefore, limited pool size cannot explain the
differences we find.

In conclusion, the uniformity in the average probability
found by Rosanio et al. is not currently understood from a
DNA-mechanical point of view and more research is needed
to understand where the difference between DNA rings and
nucleosomes originates.

VII. SELEX SIMULATION FOR SMALL
AND OVERWOUND CIRCLES

A further benefit of our ability to perform SELEX exper-
iments in silico is that it allows for studying systems that are
experimentally difficult to realize, such as very small rings,
rings whose length is not an integer multiple of the helical
period of DNA, or overwound rings. These all have a high
energetic cost and are therefore slow to form, as they are
dependent on thermal fluctuations for ligation. In our simu-
lations, we can simply impose the desired constraints from the

FIG. 7. The total frequency of the A/T-rich dinucleotides (AA/AT/TA/TT)
for three different rings, all directionally biased using the artificial locking
sequence from Ref. 34 (see Sec. V): the 126-base-pair ring considered before
(red solid curve), a 121-base-pair ring, which requires over- or undertwisting of
the DNA (dashed green curve) and a significantly shorter (but not overwound)
84-base-pair ring (dotted blue curve). All three curves were calculated at
room temperature, with the mutation temperature reduced to 1/3 of room
temperature. This was achieved as described in Sec. III. A ring whose length
is not an integer multiple of the helical repeat stretches (in this case, where the
ring is underwound) the periodicity of the distributions and slightly reduces
their amplitude. A tighter ring leads to larger amplitudes.

beginning, and we do not need to wait for the system of interest
to form spontaneously.

Figure 7 presents a part of the AA/AT/TA/TT dinucleotide
distributions for three different rings: the 126-base-pair ring
analogous to the one used by Rosanio et al., a slightly shorter,
121-base-pair ring (which leads to a slightly twisted ring
because the length is not an integer multiple of the helical
period), and a much shorter 84-base-pair ring, with corre-
spondingly larger curvature. All rings are direction-biased not
using the locking sequence of Rosanio et al., but with the
artificial, strongly bent sequence from Ref. 34, described in
Sec. V. We chose this sequence over the locking sequence from

FIG. 8. (a) A teardrop-shaped DNA molecule, held in
place at its ends. (b)–(d) Dinucleotide distributions calcu-
lated for the teardrop-shaped DNA, at room temperature,
with the mutation temperature reduced to 1/3 of room
temperature. The teardrop is most strongly curved in the
center and more straight toward the ends of the molecule.
This leads to distributions similar to those of rings, but
whose amplitudes taper off toward the ends.
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Rosanio et al. because of the stronger and cleaner directional
bias (see Fig. 2).

The 84-base-pair ring is more tightly curved and therefore
places a stronger selection on the sequences, leading to the
higher amplitude in the frequencies. For ease of comparison,
Fig. 7 only shows the combined frequencies of the A/T-rich
dinucleotides, but the same effect applies to all individual
dinucleotide frequencies.

The 121-base-pair ring is underwound by half a turn, and
the periodicity in the dinucleotide frequencies is correspond-
ingly stretched to a slightly larger period. The amplitude is
not increased, as we found when shortening the ring to 84
base pairs, but is rather slightly decreased. This is in fact as
expected: the locking sequence becomes less effective when
the DNA is underwound because it is designed to give coherent
curvature in unconstrained DNA. The twist mismatch weak-
ens the directional bias imparted by the locking sequence. As
for the 84-base-pair ring, these observations are conserved
among all dinucleotide probabilities, not only those shown in
Fig. 7.

We could underwind or overwind our rings by more than
half a turn, and we would expect similar stretching and com-
pression of the periodic nature of the frequencies. However,
we will start to run into two complications. First, as already
observed, the locking sequence will become less effective. (We
could design locking sequences specifically for overwound or
underwound DNA, but that is beyond the scope of the current
work.) Second, for strongly overwound or underwound DNA,
it will become energetically favorable to supercoil.52,53 This
complicates the system because different parts of the DNA will
interact and steric interactions must be taken into account.

We modeled half of a figure-eight supercoil of DNA as a
simple teardrop shape as a proof-of-principle. This model con-
sists of two constraints: we place the base pairs of our molecule
along a teardrop-shaped curve and keep the first and last base
pairs fixed throughout the simulation. An example state is
shown in Fig. 8(a). Such a shape, although it is essentially
two-dimensional and therefore a simplification of real three-
dimensional supercoiling configurations, emulates the basic
geometry of the end-loops of supercoils54 and protein-induced
DNA loops.55,56

Applying our methodology to such a teardrop shape, con-
sisting of 126 base pairs, we find the dinucleotide frequencies
presented in Figs. 8(b)–8(d). As expected, the distributions we
find resemble those of a ring. However, because the curvature is
not constant—it falls off toward the ends of the molecule—the
amplitude of the distributions tapers off.

VIII. CONCLUSION

We have presented methods to emulate, in silico, equi-
librium SELEX experiments. The MMC method32 is akin to
such experiments and can be used to select for high-affinity
sequences for a given DNA system. One limitation of the MMC
method was that the selection pressure on the sequences and
the temperature in the simulation are linked. In an equilibrium
SELEX experiment, the mutation pressure is modified in a
mathematically straightforward way by the number of rounds
of selection applied.

We employed the methodology of Ref. 30, which makes
use of the output of a MMC simulation to build a model
for sequence-dependent nucleosome affinity, to resample
sequence space at a different mutation temperature, with-
out altering the temperature employed for the spatial moves.
This separation of mutation pressure and physical temper-
ature allows us to more closely mimic the outcome of a
SELEX experiment, as well as learn more about our systems in
general.

We have used this new methodology to examine vari-
ous systems. First, in Sec. IV, we assessed how changing the
physical temperature, without changing the mutation pressure,
affects the sequence preferences of nucleosomes and rings. We
found that, due to the strongly constrained nature of the nucle-
osome, entropic contributions to the free energy do not play
an influential role, and consequently the sequence preferences
of the nucleosome are not strongly temperature-dependent (in
the range between 1/4 of room temperature and room temper-
ature). Rings, on the other hand, are not heavily constrained
systems, which means that the entropic contribution to their
free energy is more important and the sequence preferences of
rings depend strongly on temperature.

In Sec. V, we considered the SELEX experiment for
rings performed by Rosanio et al.

22 This experiment is not
an ideal equilibrium SELEX experiment because it uses irre-
versible reactions, and we examined what effect this has on
the (non-Boltzmann) distribution the experiment imposes on
sequence space. While some differences in the methodology
must be noted, the effects on the measured sequence prefer-
ences turned out to be small and we were able to compare the
predictions of our in silico SELEX experiment for rings with
the experimental results. We found that the periodic nature
of the dinucleotide distributions in rings is well captured by
the RBP model we employed to model the DNA. However,
some differences are apparent, the most striking one being that
we predict significant deviation away from 1/16 in the over-
all frequencies of dinucleotides. For example, we find the CG
dinucleotide significantly enriched, similar to what we find for
nucleosomes.

The experimental distributions show very little overall
variation away from 1/16, meaning that no dinucleotides are
significantly enriched or depleted along the entire length of the
ring. As discussed in Sec. VI, this difference might point to
a failure of the RBP model or its parameterization to capture
an unknown difference between rings and nucleosomes. It is
also possible that the experimental conditions caused a change
in the behavior of the DNA, leading to the theoretically unex-
pected difference. Whichever the case, more research is needed
to answer this question.

We finally applied our methods to several systems that
would be difficult to access experimentally. We considered
rings that would have difficulty forming because they either
consist of only a short piece of DNA, requiring tight curvature,
or because their length is not an integer multiple of the helical
repeat length of DNA. We also considered a teardrop-shaped
DNA molecule, which mimics a part of strongly overwound
(or underwound) DNA, or a protein-induced antiparallel DNA
loop. Despite being difficult to reproduce in the lab, DNA
that is sharply bent into circular or antiparallel loops plays
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important roles in biology,57 and we showed that our methods
can be used to determining the sequence preferences of such
systems, opening up new possibilities of examining systems
that have been inaccessible until now.

The methodology we have presented relies on a sequence-
dependent description of DNA mechanics, for which role we
have cast the rigid base-pair model. However, the methods are
general and can be used with any other underlying model, and
they are straightforward to update if and when more advanced
DNA models become available in the future.
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