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Where the linearized Poisson–Boltzmann cell model fails:
Spurious phase separation in charged colloidal suspensions

M. N. Tamashiroa) and H. Schiessel
Max-Planck-Institut fu¨r Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

~Received 16 October 2002; accepted 11 April 2003!

The Poisson–Boltzmann~PB! spherical Wigner–Seitz cell model—introduced to theoretically
describe suspensions of spherical charged colloidal particles—is investigated at the nonlinear and
linearized levels. The linearization of the mean-field PB functional yields linearized Debye–
Hückel-type equations agreeing asymptotically with the nonlinear PB results in the weak-coupling
~high-temperature! limit. Both the canonical~fixed number of microions! as well as the
semigrand-canonical~in contact with an infinite salt reservoir! cases are considered and discussed in
a unified linearized framework. In disagreement with the exact nonlinear PB solution inside a
Wigner–Seitz cell, the linearized theory predicts the occurrence of a thermodynamical instability
with an associated phase separation of the homogeneous suspension into dilute~gas! and dense
~liquid! phases, being thus a spurious result of the linearization. We show that these artifacts,
although thermodynamically consistent with quadratic expansions of the nonlinear functional and
osmotic pressure, may be traced back to the nonfulfillment of the underlying assumptions of the
linearization. This raises questions about the reliability of the prediction of gas/liquid-like phase
separation in deionized aqueous suspensions of charged colloids mediated by monovalent
counterions obtained by linearized theories. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1579676#
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I. INTRODUCTION

The study of classical charged systems has receive
increased renewed interest in view of many indust
applications:1,2 Paint, petrochemicals, food, pharmaceutica
cosmetics, diapers, sewage treatment, etc. M
environmental-friendly new materials are hydrosoluble d
to the presence of ionizable groups that dissociate upon
tact with water. In fact, their hydrosolubility is a result of th
combination of Coulomb repulsion between fixed charg
monomers and the mixing entropy maximized by the mo
ity in solution of the oppositely charged small counterion
Besides technological applications, charged mac
molecules like lipid aggregates~bilayers, micelles, and
vesicles!, proteins and polynucleotides~including DNA and
RNA! are also of fundamental importance in the biochem
try of living systems.3,4 Furthermore, due to the availabilit
of faster computers, many new insights in soft-matter ph
ics come from Monte Carlo and molecular-dynamics sim
lations of charged systems.5,6 These may be partially viewe
as controlled theoretical experiments and provide a com
mentary approach to analytical treatments.

An ubiquitous case is that of mesoscopic charged col
dal particles~also called polyions or macroions! immersed in
aqueous solution, which polarize the small mobile ions
their vicinity: Microions of opposite sign~counterions! are
attracted to them, while like-sign microions~coions! are re-
pelled. The theoretical description of these suspensions
quires the understanding of the role of the electrostatic in
actions between charged objects mediated by

a!Electronic mail: tamashir@mpip-mainz.mpg.de
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Downloaded 12 Jul 2004 to 194.95.63.241. Redistribution subject to AIP
an
l
,
y
e
n-

d
-
.
-

-

-
-

e-

i-

n

e-
r-
e

surrounding aqueous ionic solution. In view of the man
body problem and the long-range nature of the Coulo
interaction, a statistical-mechanical treatment of the sys
is nontrivial. Within the primitive model7 ~PM! the molecular
nature of the solvent is ignored~neglect of van der Waals an
hydration forces! and the suspension is treated as a tw
component system, comprised of the highly charged la
polyions ~and its neutralizing counterions! and oppositely
charged pairs~anions and cations! of ionized salt particles.
These are immersed in a continuous medium of dielec
constante and interact through the bare Coulomb potent
with additional hard-sphere repulsion. In the PM it is impli
itly assumed that the~hard! spheres have the same dielect
constant as the solvent, so there are no electrostatic im
effects. For symmetric~in size and charge! electrolytes the
PM reduces to the restricted primitive model~RPM! and a
theoretical description for dilute solutions may be develop
using the traditional Debye–Hu¨ckel ~DH! theory for
electrolytes,8–10 with some improvements taking non
linearities11 into account or using integral-equatio
methods.10,12 An extension of these theories for a colloid
suspension is nontrivial12–14 in view of the huge asymmetry
between poly- and microions. Compared to the symme
case, nonlinearities are magnified and dominate in the str
asymmetric colloidal limit.

A mean-field approach to the PM, represented by
Poisson–Boltzmann~PB! approximation,15–18 is often used
in conjunction with the so-called Wigner–Seitz~WS! cell
model. Both are discussed in Appendix A—this and all fu
ther Appendices will be presented in the form of an asso
ated EPAPS document.19 In view that even with these ap
5 © 2003 American Institute of Physics
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proximations the nonlinear PB equation can only be sol
analytically in few particular cases, it would be very helpf
to formulate a linearized version of the PB approximation
WS-cell models, in analogy to the DH approach to the RP
We should remark, however, that the linearized version~at
the mean-field level! of the WS-cell model does not includ
any intercell ~neither polyion–microion nor microion–
microion! correlations andintracell microion–microion cor-
relations. This is in contrast to the traditional DH approach
the ~symmetric! RPM, which automatically includes thes
correlations. While in the RPM the mean-field contributi
vanishes,20 in the PB WS-cell model it comes from th
intracell polyion–microion correlations. Therefore, a mo
appropriate interpretation of the linearized equations to
obtained in the present work is that they correspond to
expansion about the weak-coupling or high-temperature l
of the mean-field equations.

Two decades after the first experimental evidences
attraction between like-charged spherical colloids media
by monovalent counterions in bulk deionized aqueous s
pensions, its existence is still under dispute. Under the m
tioned conditions, electrostatic-stabilized colloidal cryst
have been investigated by Iseet al.,21 revealing the presenc
of empty regions~voids! inside the crystal. These experime
tal observations were interpreted as a coexistence betwe
dense crystalline phase and a dilute gas phase. Similar v
were also found experimentally in the fluid phase,22 which,
in analogy to the critical behavior of symmetric electrolyte
were interpreted as a coexistence between dilute~gas! and
dense~liquid! fluid phases. Even fully equilibrated macro
scopic gas–liquid phase separation has been reported,23 al-
though these experimental observations have been attrib
to the presence of ionic impurities.24

From the theoretical point-of-view attractive interactio
between like-charged spheres are observed only under
cial conditions. For example, they have been seen in Mo
Carlo simulations in the presence of multivalent count
ions25–27 or when the low-temperature ordering of the d
crete charges is taken into account.28 Under the conditions
described in the previous paragraph those controversial
perimental findings are either attributed to the presence
long-range attractive electrostatic interactions between l
charged polyions,29 by the presence of polyelectrolyt
impurities,30 or by state-independent volume terms31,32 ob-
tained by approximations that involve some kind
linearization: Random-phase approximation,33–35 DH pair-
distribution functions augmented by a variational approa
for the polyion–polyion interactions,36 linear-response ap
proximation,37 extended DH theory for asymmetri
electrolytes,38 mean-spherical approximation~MSA!39 and
symmetric PB and MSA.40 Even though it has been argue
by Overbeek and others41 that the Sogami–Ise attraction29 is
due to inconsistencies in their thermodynamic treatment,
question does not seem to be settled yet and discussio
still in progress.42 This attractive potential is in contrast t
the generally accepted repulsive electrostatic componen
the DLVO43,44 ~Derjaguin–Landau–Verwey–Overbeek! pair
potential between like-charged polyions. However,
purely repulsive nature of the polyion–polyion effective p
Downloaded 12 Jul 2004 to 194.95.63.241. Redistribution subject to AIP
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potential does not precludea priori the existence of a gas–
liquid separation, as has been shown by Roijet al.34 The
focus on the polyion–polyion effective interactions ove
looks the important contribution to the free energy due to
polyion–microion interactions.

Because most of the alternative analytical calculations
the Sogami–Ise attractive interaction potential requires so
linearization procedure, the predicted gas–liquid coexiste
should be analyzed with caution. In fact, no instabilities ha
been yet detected by Monte Carlo simulations in the pr
ence of~explicit! monovalentcounterions.26,45Further inves-
tigations with higher polyion valences should still be cons
ered in order to confirm or invalidate these theoreti
predictions. We should mention, however, that prelimina
molecular-dynamics46 as well as Monte Carlo47 simulations
in the presence of explicitmonovalentcounterions in the
regime of high-surface charge and low density of polyions
where linearized theories predict phase separation—h
shown no sign of any instabilities yet. Moreover, there a
indications that the observed van der Waals-type loops
artifacts due to the linearization, these being drastically s
pressed when nonlinearities are reintroduced in the theor
the use of renormalized charges.48 Furthermore the lineariza
tion of the WS-cell semigrand-canonical PB functional
which describes~at the mean-field level! the system in elec-
trochemical equilibrium with an infinite salt reservoir—
yields negative-compressibility, thermodynamically unsta
regions which are absent in a full nonlinear treatment.49,50

Although many aspects of these artifacts for the semigra
canonical case were already reported in the literature,49 in-
cluding a general analysis of the linearization scheme
various geometries, electrolyte compositions and arbitr
expansion densities,50 we believe that there are still a few
subtle points that need to be clarified, in particular conce
ing the relations between these spurious results and the
modynamic self-consistency of alternative schemes of line
ization.

The purpose of this paper is to perform a careful a
detailed investigation about the linearization procedure
the well-controlled case of the PB WS-cell model. W
believe this allows a broader audience—which might n
be quite familiar with the more sophisticated treatme
involving correlation-functions and integral-equatio
methods33–40—to understand the underlying physical a
sumptions of the approximate linearized theories. First
develop a linearization scheme suitable to the canon
~fixed amount of microions! case, by adopting an explicitly
gauge-invariant approach. For the semigrand-canonical c
it has been argued by Deserno and von Gru¨nberg50 that the
occurrence of unstable linearized equations of state dep
on the way the linearization scheme is performed and on
osmotic-pressure definition. By extending our gaug
invariant approach to the semigrand-canonical ensemble
try additionally to shed some light on this question. We sh
that thermodynamic stability and consistency are in fact
dependent concepts. The gauge-invariant forms of the e
tions of state allow to establish an explicit corresponde
between their nonlinear and linearized versions. We w
show, by using gauge-invariant forms for the electrosta
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



nd

ar
tie
es

m
ly

-
y

th
as

er

ca
an
n

in
he

I
t

lin
id

l
e
o
o

in
a
t
a

te

y
n

b
n
s

l

W
y

g
el

nd

ver

e
tro-

ix
e

ages

s
the

at

e
sity

ee
by

1857J. Chem. Phys., Vol. 119, No. 3, 15 July 2003 Spurious phase separation in charged colloidal suspensions
potential, that there is auniquelinearization~about the state-
independent zeroth-order Donnan densities! that corresponds
to the minimization of the associated linearized semigra
canonical functional, which is also asymptotically exact~at
the mean-field level! in the weak-coupling ~high-
temperature! limit. Therefore, the expansion of the nonline
functional about the state-independent Donnan densi
originally proposed for the spherical geometry in the pr
ence of symmetric electrolyte by von Gru¨nberget al.49—and
generalized for arbitrary electrolyte compositions and geo
etries with analogous high symmetry in Ref. 50—is not on
‘‘optimal,’’ but it is asymptotically exact in the weak
coupling limit. The linearized equations, although thermod
namically self-consistent with quadratic expansions of
nonlinear ones, lead to artifacts when their underlying
sumptions are not satisfied. In a related paper51 explicit ana-
lytical comparison is performed for the planar case, wh
the exact nonlinear solution~at the mean-field level! can be
obtained. We additionally show that the thermodynami
equivalence between the linearized canonical and semigr
canonical formulations of the problem turns out to be no
trivial because of the Donnan effect~Appendix G!, the en-
semble invariance of the linearized equations only be
possible with the inclusion of quadratic contributions in t
linearized expansion densities.

The remainder of the paper is organized as follows:
Sec. II the salt-free model is introduced and the associa
nonlinear equations are briefly presented. In Sec. III the
earization of the appropriate functional is performed, cons
ering three distinct physical situations: The salt-free~in the
presence of neutralizing counterions only! system introduced
in Sec. II, with fixed amount of added monovalent salt~ca-
nonical ensemble! and in electrochemical equilibrium with
an infinite monovalent salt reservoir~semigrand-canonica
ensemble!. Some concluding remarks are presented in S
IV. Several technical and subtle points are discussed in m
detail in Appendices A–I, which are presented in the form
an associated EPAPS document.19

II. NONLINEAR EQUATIONS

In this section we shortly summarize the framework
which the linearization procedure will be performed. For
detailed presentation and discussion—which emphasize
advantages of the use of a Lagrange multiplier leading to
explicitly gauge-invariant approach—we address the in
ested reader to Appendix A.

A suspension of polyions, whose hard cores occup
volume fractionf, is treated within the WS-cell model, i
which the physical properties of the system are studied
considering only one fixed polyion and its neutralizing cou
terions inside a WS cell. We will restrict ourselves to the ca
of spherical polyanions of radiusa—each carrying a tota
charge2Zq distributed uniformly on its surface, withq be-
ing the elementary charge—inside a concentric spherical
cell of radiusR5a/f1/3. The generalization to other highl
symmetric geometries is straightforward, cf. Ref. 50.

We introduce the mean-field PB Helmholtz free-ener
functionalF @n1(r)# associated to a single spherical WS c
Downloaded 12 Jul 2004 to 194.95.63.241. Redistribution subject to AIP
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bF @n1~r!#5
1

8p,B
E d3r @¹c~r!#2

1E d3r n1~r!$ ln@n1~r!z1
3 #21%, ~1!

whereb215kBT is the thermal energy at temperatureT, z1

is the thermal de Broglie wavelength of the counterions a
,B5bq2/e is the Bjerrum length withe being the dielectric
constant of the solvent. The integrations are performed o
the free volumeV5(4p/3)(R32a3) unoccupied by the
polyion, a<uru<R. The total charge number densityr~r! is
the sum of the continuous counterion density profilen1(r)
and the negative surface charge on the polyion,

r~r!5n1~r!2
Z

4pa2 d3~ uru2a!, ~2!

whered3 is the three-dimensional Dirac delta function. Th
total charge number density is related to the reduced elec
static potentialc(r)[bqC(r) by the ~exact! Poisson equa-
tion, ¹2c(r)524p,Br(r). Functional minimization ofF
with respect to the counterion profilen1(r) under the WS-
cell charge-neutrality constraint,*d3r r(r)50—see the deri-
vation making use of a Lagrange multiplier in Append
A—yields the equilibrium counterion profile in terms of th
Boltzmann factor

n̄1~r!5
Ze2c̄(r)

*d3r e2c̄(r)
5

nc exp@^c̄&2c̄~r!#

^exp@^c̄&2c̄~r!#&
,

~3!

nc[^n̄1~r!&5
Z

V
,

where we introduced theeffective average densitync of
counterions in the free volumeV unoccupied by the polyion
core, and the brackets denote unweighted spatial aver
over V, ^X(r)&[*d3r X(r)/*d3r. Substituting the equilib-
rium counterion profilen̄1(r) into the Poisson equation lead
to the PB equation, that needs to be solved numerically in
case of spherical polyions.

The Helmholtz free energy,F[F @ n̄1(r)#, is obtained
by evaluating the functionalF at the optimized profile
n1(r)5n̄1(r). It can be shown—cf. Sec. 3 of Ref. 18—th
the nonlinear osmotic pressureP[2dF/dV ~over pure sol-
vent! is simply given by

bP5n̄1~R!, ~4!

which is the well-know WS-cell mean-field result that th
salt-free osmotic pressure is related to the counterion den
at the WS-cell boundary52,53 r[uru5R. Henceforth, to sim-
plify the notation, we will omit the bar to denote equilibrium
properties.

III. LINEARIZATION SCHEME

A. In the presence of neutralizing counterions only

Let us introduce a linearized free-energy functionalFDH

that will lead to DH-type equations of state for the salt-fr
model system defined in the previous section. We start
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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1858 J. Chem. Phys., Vol. 119, No. 3, 15 July 2003 M. N. Tamashiro and H. Schiessel
truncating the expansion of the nonlinear PB Helmholtz fr
energy functional~1! to the quadratic order in the differenc
n1(r)2nc

bFDH@n1~r!#[
1

8p,B
E d3r @¹c~r!#21Z @ ln~ncz1

3 !21#

1nc ln~ncz1
3 !E d3r Fn1~r!

nc
21G

1
1

2
ncE d3r Fn1~r!

nc
21G2

. ~5!

Functional minimization of the linearized functionalFDH

with respect ton1(r) under the WS-cell charge-neutralit
constraint,*d3rr(r)50—performed in Appendix B with the
use of a Lagrange multiplier—leads to the linearized equi
rium counterion profile and to the linearized DH-type equ
tion for the electrostatic potentialc(r)

n1~r!5nc@11^c~r!&2c~r!#, ~6!

¹2c~r!5k2@c~r!2^c~r!&21#1
Z,B

a2 d3~ uru2a!, ~7!

with the inverse Debye screening length defined in terms
the averaged counterion densitync

k5kc[A4p,Bnc. ~8!

One should note that this is different from the stand
linearized-PB treatment of the spherical WS cell—associa
with the definition of a renormalized charge54—where the
Debye screening length is defined in terms of the WS-
boundary densityn1(r 5R). A detailed discussion compa
ing the two different linearization schemes—the stand
one and the approach considered here—is performed in
pendix B, where the explicit solution to the electrostatic p
tential of the linearized DH-type Eq.~7! is also presented.

The linearized Helmholtz free energy, FDH

[FDH@n1(r)#equil, is obtained by evaluating the linearize
functionalFDH , Eq. ~5!, at the optimized profilen1(r) sat-
isfying Eqs.~6! and~7!, and it is given explicitly by Eq.~B9!
of Appendix B. The linearized osmotic pressure~over pure
solvent! of the colloidal suspension follows from the neg
tive total derivativeof the linearized Helmholtz free energ
FDH with respect to the WS-cell free volumeV, PDH

[2dFDH /dV,

bPDH5ncH 11
Zk,B

4D2
2~kR,ka!

FD1~kR,ka!

ka

3@D1~kR,ka!2D2~kR,ka!#

24kaS 11
2

3
k2a22k2R2D2

4

3
k3R3G J , ~9!

where we introduced the functionsD1(u,v)[D1(u)ev

2D2(u)e2v, D2(u,v)[D1(u)D2(v)2D2(u)D1(v), and
D6(u)[(16u)e7u. To obtain Eq.~9! one should take into
account both the explicitR dependence as well as the vo
ume dependence of the screening lengthk21 when com-
puting the total derivative, d/dV51/(4pR2) ]/]R
2k/(2V)]/]k. The first term of Eq.~9! represents the uni
Downloaded 12 Jul 2004 to 194.95.63.241. Redistribution subject to AIP
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form counterion-density ideal-gas law, while the next te
corresponds to the mean-field electrostatic corrections55 due
to intracell polyion–microion correlations. In Appendix C i
is shown that the linearized osmotic pressure~9! can be also
obtained by aformal differentiation of the linearized Helm
holtz free energyFDH and that it also corresponds to a qu
dratic expansion of the nonlinear PB osmotic pressure~4!. At
the end of the next subsection we shall find that for su
ciently high surface charges or low temperatures the line
ized osmotic pressure~9! is no longer a monotonic function
of the WS-cell free volumeV, which would imply a thermo-
dynamical instability and an associated gas/liquid-like ph
separation of the system—in contrast to the full nonline
theory, which does not predict any instability.56

B. In the presence of neutralizing counterions
and added salt „canonical ensemble …

Let us now add a symmetric monovalent~1:1! salt to the
system. We treat all microions at the same level of me
field approximation, describing them by the average lo
number densitiesn6(r). We will not distinguish between
counterions and positive ions derived from the salt disso
tion. Therefore,n1(r) accounts both for counterions an
positive salt ions~cations!, while n2(r) represents the nega
tive coions~anions!. In terms of these number densities, t
total charge number density and the total microionic den
read, respectively,

r~r!5n1~r!2n2~r!2
Z

4pa2 d3~ uru2a!,

and

n~r!5n1~r!1n2~r!. ~10!

The effective average uniform densities of positive and ne
tive microions are given by

c65^n6~r!&5
Q6

V
, Q15Z1nsV, Q25nsV, ~11!

wherens is thea priori known effective average salt conce
tration andQ6 are the fixed total number of positive an
negative microions inside a WS cell. Within the cell-mod
approximation the salt ions are evenly distributed betwe
different cells and the average salt concentrationns is the
same for each identical WS cell. We introduce the dime
sionless parameter

s[
Q2

Z
5

ns

nc
, ~12!

which measures the contribution of the salt ions to the io
strength in the suspension

I[ 1
2 ~nc12ns!5 1

2 ~112s!nc . ~13!

As in the previous subsection, we expand the nonlin
PB Helmholtz free-energy functional
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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bF @n6~r!#5
1

8p,B
E d3r @¹c~r!#21 (

i 56
E d3r ni~r!

3$ ln@ni~r!z i
3#21%, ~14!

about the average uniform densities~11! up to quadratic or-
der in the differencesn6(r)2c6 , to obtain the linearized
Helmholtz free-energy functional

bFDH@n6~r!#

5
1

8p,B
E d3r @¹c~r!#21 (

i 56
Vci @ ln~ciz i

3!21#

1 (
i 56

ci ln~ciz i
3!E d3r Fni~r!

ci
21G

1
1

2 (
i 56

ciE d3r Fni~r!

ci
21G2

, ~15!

wherez6 are the thermal de Broglie wavelengths of catio
~including the positive counterions! and anions, respectively

Functional minimization of the linearized function
FDH@n6(r)# with respect ton6(r) under the WS-cell charge
neutrality constraint

E d3r r~r!50, or E d3r @n1~r!2n2~r!#5Z, ~16!

—performed in Appendix D with the help of a Lagrang
multiplier—leads to the linearized equilibrium density pr
files and to the linearized DH-type equation for the elect
static potentialc(r)

n6~r!5c6@16^c~r!&7c~r!#, ~17!

¹2c~r!5k2Fc~r!2^c~r!&2
1

112sG1
Z,B

a2 d3~ uru2a!,

~18!

where the inverse of the Debye screening length is n
given by

k5A8p,BI 5A4p,B~112s!nc5kcA112s. ~19!

As discussed in Appendix D, the infinite-dilution limit (R
→`) of the linearized solution to the electrostatic potent
c(r) leads to the repulsive electrostatic component of
traditional DLVO43,44 interaction potential.

The linearized Helmholtz free energy, FDH

[FDH@n6(r)#equil, is obtained by evaluating the linearize
functionalFDH@n6(r)#, Eq. ~15!, at the linearized optimized
profilesn6(r) satisfying Eqs.~17! and ~18!, and it is given
explicitly by Eq. ~D8! in Appendix D. In this Appendix we
also discuss the correspondence between the infinite-dilu
limit ( R→`) of the excess Helmholtz free energy and t
state-independent volume terms obtained by Roijet al.,34

which have been claimed to drive a gas–liquid phase se
ration in dilute deionized aqueous colloidal suspensions.
linearizedcanonical osmotic pressure of the colloidal su
pension follows from the negativetotal derivativeof the lin-
earized Helmholtz free energyFDH with respect to the WS-
cell free volumeV, but keeping fixed the total amount o
salt, PDH

can(f,s)[2(dFDH /dV)s , where the subscript to
Downloaded 12 Jul 2004 to 194.95.63.241. Redistribution subject to AIP
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the right of the total derivative emphasizes that the param
s remains fixed during the total differentiation with respe
to V

bPDH
can~f,s!

5~112s!ncH 11
Zk,B

4~112s!D2
2~kR,ka!

FD1~kR,ka!

ka

3@D1~kR,ka!2D2~kR,ka!#

24kaS 11
2

3
k2a22k2R2D2

4

3
k3R3G J , ~20!

where k is a function of (f,s) through Eq.~19!, and the
functionsD1 ,D2 are defined after Eq.~9!. In Appendix D it
is shown that the linearized canonical osmotic pressure~20!
corresponds to a quadratic truncation of the nonlinear
canonical osmotic pressure~D2!.

In the vanishing volume fraction of polyions~infinite-
dilution! limit, f5(a/R)3→0, the linearized canonical os
motic pressure has the asymptotic behavior

bPDH
can5

u~112s!f

4pa2,B
F12

u

10~112s!
f1/3

2
4u2

175
f2/31O~f!G ,

u[
3Z,B

a
. ~21!

This leads to the asymptotic linearizedcanonicalinverse iso-
thermal compressibility

bxcan
21[npS dbPDH

can

dnp
D

s

5Znp~112s!F12
2u

15~112s!
f1/3

2
4u2

105
f2/31O~f!G , ~22!

wherenp5(4pR3/3)21 is the polyion density of the suspen
sion. In the presence of added salt, the stability of the s
pension is associated to the positiveness of the eigenva
of the associated Hessian matrix—as discussed in Appe
H—instead of simply being related to the positiveness of
canonical inverse isothermal compressibilityxcan

21 , as com-
pared in Fig. 1. The infinite-dilution asymptotic behavior
the functionS(f,s), Eq.~H2!—whose vanishing defines th
linearized canonical spinodal line—reads

S~f,s!5
uf

11s F12
2u

15
~112s!f1/3

2
4u2

525
~524s24s2!f2/31O~f!G . ~23!

In contrast to the semigrand-canonical case~to be treated in
the next subsection!, the suspension is thermodynamical
stable in the infinite-dilution limit for any finites ~canonical
case!, limf→0 S(f,s).0. However, as exemplified by th
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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salt-free case in Fig. 2, for finite densities~fÞ0! and suffi-
ciently large values ofu, the linearized canonical osmoti
pressurePDH

can is no longer a convex function of the volum
fraction f, implying thus the onset of a thermodynamic
instability. For salt-free suspensions (s50), the associated
critical point—represented by the black circle in Fig. 1—
located at

fcrit50.008 586 189̄ , ucrit544.902 477 094̄ , ~24!

which is determined by the criticality condition dPDH
can/df

5d2PDH
can/df250. We should stress that the coexistence

FIG. 1. Spinodal lines~solid lines! associated with the linearizedcanonical
osmotic pressurePDH

can, Eq. ~20!, in the u53Z,B /a vs volume fractionf
5(a/R)3 plane. As explained in Appendix H, they correspond to lines
vanishing determinant of the associated Hessian matrix, and—except fo
salt-free case—do not coincidewith the lines of vanishing linearized canon
cal inverse isothermal compressibility,xcan

2150 ~dashed lines!. In the gray
region the linearized isothermal compressibility of the salt-free (s50) sus-
pension becomes negative, leading to a coexistence between gas~G! and
liquid ~L! fluid phases. The black circle represents the salt-free critical p
~see main text for more details!. Note that this is in contrast to the ful
nonlinear treatment, whichalwayspredicts positive compressibilities~Ref.
56!. Addition of monovalent saltenhances the instabilityby shifting the
canonical spinodal lines to lower values ofu ~higher temperatures or lowe
polyion valences!, as labeled by the two solid lines with increasing values
s. This is in contrast to a naive analysis based only on the vanishing o
canonical isothermal compressibility~dashed lines!, which deceptively sug-
gests exactly the opposite—namely, that addition of monovalent saltwould
stabilize the suspensionagainst phase separation.

FIG. 2. Salt-free (s50) linearized osmotic-pressure isotherms as a funct
of the volume fractionf5(a/R)3. From top to bottom the isotherms co
respond tou541,43,ucrit544.902 477̄ (bold line), 47 and 49. In the gray
region the salt-free linearized isothermal compressibilityxDH is negative,
which would imply a thermodynamical instability that leads to a pha
separation between two fluid phases: A low-f ~dilute! gas~G! and a high-f
~dense! liquid ~L!. The black circle represents the salt-free critical osmo
pressure and the dashed curve defines the salt-free spinodal line inu
3f diagram~the s50 line in Fig. 1!.
Downloaded 12 Jul 2004 to 194.95.63.241. Redistribution subject to AIP
l

-

gions between the dilute gas~G! and the dense liquid~L!
phases—limited by the binodal lines, not shown in F
1—must be determined under the constraints of cons
chemical potential of polyionsmp and of salt particlesms.
Further details about how to determine the binodal lines
given in Appendix D. However, because the critical behav
is a spurious result of the linearization, it is not worthwh
to construct the phase diagrams in detail and we restrict
selves only to present the spinodal lines in Fig. 1. Since
criticality condition defines where the binodal and the sp
odal lines meet, the location of the critical points does n
require computation of the binodal lines. In Appendix D w
also discuss possible charge-renormalization54,57,58effects on
the spurious phase separation predicted under linearizat

C. In contact with an infinite salt reservoir
„semigrand-canonical ensemble …

Let us now consider the colloidal suspension in elect
chemical equilibrium with an infinite salt reservoir of fixe
bulk densitynb . The suspension is separated from the in
nite reservoir by a semipermeable membrane. The solv
and microions~counterions and salt ions! can pass through
the membrane, but not the large polyions. This gives rise
an imbalance in the osmotic pressure across the semipe
able membrane. This equilibrium between the suspens
and the salt reservoir is referred to as a Donn
equilibrium.9,59–61 Like in the previous subsections we wi
consider only the case of monovalent counterions and s
metric monovalent~1:1! salt.

The effective average salt concentration in the colloi
suspension,ns[^n2(r)&, does not coincide with the rese
voir bulk densitynb and is not knowna priori. A nontrivial
question is its dependence with the physical parameter
the system, e.g., bulk salt concentrationnb , polyion radius
a, polyion valenceZ and volume fractionf[(a/R)3. At the
WS-cell PB mean-field level of approximation this proble
has already been considered in the literature62,63 and it is
summarized in Appendix E. In agreement with exact a
general results for WS-cell models,56 the nonlinear osmotic
pressure is a monotonic increasing function of the volu
fraction f—hence the nonlinear treatment does not pred
any thermodynamical instability.

Compared to the canonical case treated in the prev
subsection—when the amount of microions is fixed a
known a priori—there are two main differences to perfor
the linearization in the Donnan-equilibrium problem. Fir
because the Donnan equilibrium is established under c
stant electrochemical potential of microions, the natural th
modynamical ensemble to perform the calculations is
semigrand-canonical one

ΩDH@n6~r!#[FDH@n6~r!#2 (
i 56

m iE d3r ni~r!,

~25!
bm65 ln~nbz6

3 !,

where we impose the equality of the microion electroche
cal potentials inside the colloidal suspension,m6 , to the
~mean-field! chemical potential of ideal gases of unifor
densitynb for both types of ions in the infinite salt reservo
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b21 ln(nbz6
3 ). The second difference is that the effective a

erage uniform densities of positive and negative ions, ab
which the linearization should be performed, vary in a no
trivial way as the WS-cell free volumeV is changed. In
Appendix F it is shown that the self-consistent lineariz
average densities for the Donnan problem are given by
state-independent zeroth-order Donnan densities

c6
(1)[

Anc
21~2nb!

26nc

2
, ~26!

wherenc5Z/V is the effective averaged counterion dens
and the superscript inc6

(1) emphasizes the fact that they we
obtained under a linearized approximation. These corresp
to the uniform densities that the system would have in
infinite-temperature (,B50) limit under the constraint o
overall WS-cell charge neutrality~16!. We should remark
that theydo not correspondto the effective averages of th
full nonlinear PB densities~E2!

c65^n6~r!&5
Anc

21~2nb!
2^ec(r)&^e2c(r)&6nc

2
, ~27!

because of the nonvanishing quadratic and higher-orden
>2) contributions of the electrostatic potential difference

dn~r![@^c&2c~r!#n. ~28!

The nonlinear expression forc6 , Eq. ~27!, has been ob-
tained by using an explicitly gauge-invariant formulation
the problem~cf. Appendix E!. The advantage of these form
is that the linearized expansion densities~26! are simply ob-
tained by taking their potential-independent, infinit
temperature (,B50) limit, where the electrostatic-potentia
differences vanish, lim,B→0 dn(r)→0. It is also clear that any
other choice for the expansion densities will not lead to
exact potential-independent~infinite-temperature! limit of
the nonlinear equations. As also derived in Appendix F,
Donnan average densities, Eqs.~26!, do indeed correspond t
the functional minimization of the corresponding lineariz
semigrand-canonical functional. We note that Deserno
von Grünberg50 define an optimal linearization poin
c̄opt—related to the above gauge-invariant expansion de

ties by c6
(1)5nbe

7c̄opt—by using arguments based on th
plausibility of this choice. They show that any other choi
for the linearization point would lead to conflicting inequa
ties involving nonlinear and linearized averages. Finally,
should mention that even though the uniform expansion d
sities c6

(1) , Eqs. ~26!, are internally self-consistent~within
the semigrand-canonical ensemble! under linearization,glo-
bal self-consistency~ensemble invariance! will require the
use of the quadratic truncation of the nonlinear avera
~27!, c65c6

(2)1O@^d3(r)&#,

c6
(2)[

Anc
21~2nb!

2ê d2(r)&6nc

2
, ~29!

as the self-consistent averaged densities, as discussed i
tail in Appendix G. Another way to look at this subtle poi
is by performing the Legendre transformation directly
level of the thermodynamic potential,VDH5FDH2m1Q1
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2m2Q2—in contrast to perform it at the level of the func
tionals. An ensemble-invariant treatment of the Donn
effect—that relates the total charges inside the WS cellQ6

5Vc6'Vc6
(2) with the average counterion densitync and

the bulk salt concentrationnb—requires at the linearized
level the use ofc6

(2) , Eqs. ~29!, as expansion densities—
instead of the simplestc6

(1) , Eqs.~26!. The inclusion of the
quadratic contributions into the expansion densitiesc6

(2) ,
however, do not improve the agreement between the lin
ized and nonlinear equations, as can be shown by the exp
analytical comparison in the exactly solvable planar cas51

However, this can only be verifieda posteriori.
Once again, functional minimization of the linearize

semigrand-canonical functionalΩDH@n6(r)# with respect to
n6(r) under the overall WS-cell charge-neutrality constra
~16!—performed in Appendix F with the help of a Lagrang
multiplier—leads to the self-consistent linearized averag
densities~26!, to the linearized equilibrium profiles and t
the DH-type equation

n6~r!5c6
(1)@16^c~r!&7c~r!#, ~30!

¹2c~r!5k2@c~r!2^c~r!&2h#1
Z,B

a2 d3~ uru2a!, ~31!

where the parameter

h[
c1

(1)2c2
(1)

c1
(1)1c2

(1) 5
nc

Anc
21~2nb!

2
, ~32!

measures the relative importance of the counterions to
ionic strength in the colloidal suspension

I[
1

2
@c1

(1)1c2
(1)#5

1

2
Anc

21~2nb!
25

nc

2h
5

nb

A12h2
.

~33!

Furthermore, the~effective! Debye screening lengthk21 in
the colloidal suspension

k258p,BI 5
kc

2

h
5

kb
2

A12h2
.kb

2, ~34!

is always shorter than the Debye screening lengthkb
21

[1/A8p,Bnb associated with the bulk salt concentrationnb

in the reservoir, showing that screening is enhanced in
colloidal suspension compared to the salt reservoir.

The linearized semigrand-canonical potential,VDH

[ΩDH@n6(r)#equil, is obtained by evaluating the linearize
semigrand-canonical functionalΩDH@n6(r)#, Eq.~25!, at the
linearized optimized profilesn6(r) satisfying Eqs.~30! and
~31!, and it is given explicitly by Eq.~F11! of Appendix F.
The linearizedsemigrand-canonicalosmotic pressure fol-
lows from the negativetotal derivative of the linearized
semigrand-canonical potential with respect to the WS-c
free volumeV, but keeping fixed the microion chemical po
tentialsm6 , PDH

sgc(f,nb)[2(dVDH /dV)m6
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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bPDH
sgc~f,nb!5

nc

h H 11
h2

2
~h221!1

Zk,Bh3

4D2
2~kR,ka!

3FD1~kR,ka!

ka
@D1~kR,ka!2D2~kR,ka!#

24kaS 11
2k2a2

3h2 2k2R2D
24S 12

2

3h2Dk3R3G J , ~35!

whereh andk are functions of (f,nb) through Eqs.~32! and
~34!, respectively. The prefactor of the right-hand side rep
sents the ideal-gas Donnan osmotic pressure taking only
WS-cell charge neutrality~16! into account

nc

h
5c1

(1)1c2
(1)5Anc

21~2nb!
2. ~36!

In analogy to the salt-free, Eq.~9!, and the canonical, Eq
~20!, cases, the first term of~35! represents the ideal-gas la
associated to the state-independent zeroth-order Donnan
sities, while the remaining terms correspond to the me
field electrostatic corrections due to the microionic polari
tion around the polyion. We should note that the second t
inside curly brackets depends onh only and is thus,B inde-
pendent. This could suggest that the zeroth-order Don
ideal-gas law, lim,B→0 bPDH

sgc5nc /h, would not be recov-
ered in the weak-coupling limit. This,B-independent term
however, is indeed necessary to cancel the contributions
arise from the last term in the,B→0 limit in order to give
the correct potential-independent infinite-temperature lim
Moreover, it is shown in Appendix E that the linearize
semigrand-canonical osmotic pressure~35! corresponds to a
quadratic expansion of the nonlinear semigrand-canon
osmotic pressure~E3!. The ensemble equivalence betwe
the linearized osmotic pressuresPDH

can(f,s) and PDH
sgc(f,nb),

Eqs.~20! and~35!, is nontrivial due to the Donnan effect. A
discussed in detail in Appendix G, the linearized Legen
transformations5s(f,nb) given by Eq.~G9! is not suffi-
cient to ensure ensemble invariance,PDH

can@f,s(f,nb)#
ÞPDH

sgc(f,nb), requiring additionally the inclusion of qua
dratic contributions in the expansion densities—i.e.,c6

(2) ,
Eqs.~29!, should be used as expansion densities for the
earization, instead ofc6

(1) , Eqs.~26!.
The linearized osmotic-pressure difference between

colloidal suspension and the infinite salt reservoir ob
bDPDH[bPDH

sgc22nb5bPDH
sgc2(nc /h)A12h2, with bPDH

sgc

given by Eq.~35!. In Appendix I we show that the linearize
semigrand-canonical osmotic-pressure differencebDPDH is
intrinsically thermodynamically unstable in the infinite
dilution limit and we compare with expressions previous
obtained by Deserno and von Gru¨nberg.50 In particular, the
infinite-dilution (f→0) asymptotic linearizedsemigrand-
canonicalinverse isothermal compressibility
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sgc

dnp
D

m6

52Znpu
3H f2

4â3~11â!2 1
5f3

2â6 F 2â3

5~11â!2 21G J
1O@f4,uf22/3exp~22âf21/3!#, ~37!

—written in terms of the dimensionless variablesu
[3Z,B /a andâ[kba—is always negative, in contrast to its
canonical counterpartbxcan

21 , Eq.~22!, obtained at fixed ratio
s.

In Fig. 3 we present the linearized semigrand-canon
spinodal lines, defined by the vanishing of the lineariz
semigrand-canonical inverse isothermal compressibility
xsgc

2150. We note that Figs. 1 and 3 cannot be, strictly spe
ing, interpreted as phase diagrams. Instead, their spur
spinodal lines should be viewed as an indication of the ra
of applicability of the linearized theory, which is asympto
cally exact ~at the PB-WS-model level! in the high-
temperature limit. Furthermore, they illustrate that simi
predictions of gas/liquid-like phase separation at low te
peratures or high surface charges—which have also b
predicted by other linearized theories, Refs. 33–40—are
tained for a thermodynamically self-consistent lineariz
theory.

IV. CONCLUDING REMARKS

We investigated in detail the linearized PB spheric
WS-cell model, by performing a linearization scheme co
sistent with quadratic expansions of the appropriate non

FIG. 3. Spinodal lines associated with the linearizedsemigrand-canonical
osmotic pressure in theu53Z,B /a vs volume fractionf5(a/R)3 plane.
Dashed lines,xsgc

2150, are associated to the internally self-consistent
motic pressurePDH

sgc , Eq. ~35!, while solid lines,x̂sgc
2150, are associated to

the globally self-consistent~ensemble-invariant! osmotic pressureP̂DH
sgc , Eq.

~G13!. The spinodal lines delimit the spurious unstable region that exte
to lower values off. To allow a comparison with the canonical case~Fig.
1!, we also show the salt-free critical point~black circle! and the salt-free
(kba50) unstable gray region. In the salt-free limit (kba!1) the
semigrand-canonical spinodal line reduces to the salt-free one, althoug
any nonvanishingkba eventually it will bend to the zero-temperature critic
point at (fcrit ,ucrit)5(0,0). In agreement to the canonical case, an incre
of the salt-reservoir bulk densitynb in the semigrand-canonical case als
enhances the instability, as can be seen from the different spinodal lin
with increasingkba. A typical nonmonotonic~but nonoscillating! osmotic-
pressure isotherm is presented in Fig. 3~dotted curve! of Ref. 50. See also
Appendix I for additional comments.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ear thermodynamic functional. By using gauge-invaria
forms of the electrostatic potential, we have shown that
linearized osmotic pressures correspond to quadratic ex
sions of the corresponding nonlinear versions for the th
cases investigated: In the presence of neutralizing coun
ons only~salt-free case!, in the presence of fixed amount o
added salt~canonical case! and in electrochemical equilib
rium with an infinite salt-reservoir~Donnan equilibrium,
semigrand-canonical case!.

Contrary to previous works,49,50we adopted an explicitly
gauge-invariant formulation with the inclusion of
Lagrange-multiplier term to account for the charge-neutra
constraint. The associated Lagrange multiplier was in
duced in Appendices A–F in order to obtain the equilibriu
profiles by functional minimization of the correspondin
functional. In the case of the Donnan equilibrium, it is sho
that the minimization of the associated linearized semigra
canonical functional leads indeed to the state-indepen
zeroth-order Donnan densities as the self-consistent ex
sion averages for the linearization. Therefore the optima

of the optimal expansion pointc̄opt introduced by Deserno
and von Gru¨nberg50 can be understood as corresponding t
self-consistent minimization of the linearized functional. W
would like to emphasize that the derivation of the expans
densities for the linearization, performed in Appendix F, do
not correspond simply to an alternative way of obtaining
results presented in previous works.49,50 In particular, we
show in Appendix G that ensemble invariance of the line
ized semigrand-canonical equations requires the inclusio
quadratic contributions in the expansion densities and in
linearized Legendre transformation, a point that could not
explored in Refs. 49 and 50.

It is shown that the self-consistent linearized osmo
pressure in the semigrand-canonical ensemble—as alr
pointed out in the literature49,50—leads to artifacts in the
infinite-dilution, high-surface charge and strong-coupli
limits, where it predicts negative isothermal compressibilit
and negative osmotic-pressure differences between the
loidal suspension and the infinite salt reservoir. Attempts
define a fully stable linearized equation of state~for symmet-
ric electrolytes! based on the partial derivative of the linea
ized semigrand-canonical potential with respect to
volume50 cannot be justified in our approach based on
minimization of the linearized functional, its stability being
fortuitous result. This can be seen most clearly in the a
lytically tractable case of two infinite charged planes in el
trochemical equilibrium with an infinite salt reservoir.51 It
turns out that the artifacts obtained by the linearization
not related to questions like thermodynamic self-consiste
ensemble invariance or possible alternative lineari
osmotic-pressure definitions, but rather are associated to
application of the linearization outside its range of validi
Whereas in our treatment we are able to clearly identify
origin of the thermodynamical instability, the approximatio
involved in the linearized theories of Refs. 33–40 are
from being under control. Because the possible reasons
their failure are indeed very subtle, we believe our investi
tion about the linearization procedure in the well-controll
case of the PB WS-cell model sheds some light on this qu
Downloaded 12 Jul 2004 to 194.95.63.241. Redistribution subject to AIP
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tion, this being thus the main motivation of our study.
The linearization scheme presented here, though be

fully thermodynamically self-consistent, shows that expr
sions obtained within a linearized framework should alwa
be interpreted with caution, since they may lead to artifa
when applied outside their range of validity. As a furth
example where the linearization clearly yields artifacts,
mention the attractive component to the effective interact
between two confined colloids induced by charged wa
predicted under linearized theory64 but in violation to the
exact ~at mean-field level! nonlinear PB repulsion.65 Al-
though earlier numerical analysis of the nonlinear solut
were in agreement with the linearized theory,66 these were
soon ruled out under very general conditions.65 The disagree-
ment with the rigorous nonlinear results might be attribu
to flaws in the numerical calculations. Attempts to inclu
ionic correlations lead indeed to attractive contributions
the effective interaction,67,68 but they are doubly-screene
and thus are not able to overcome the repulsive electros
DLVO43,44 component. Therefore, experimental evidences
confinement-induced attraction69–71 and the occurrence o
metastable superheated crystals72 cannot be explained at th
PB mean-field level and still remain an open question.73 It is
noteworthy that an explanation for the apparent attract
between like-charged colloids neara single wall has been
recently proposed by Squires and Brenner,74 where the at-
traction arises from nonequilibrium hydrodynamic flow
The estimated magnitude of this effect, however, seems t
too small to account for the attraction observed in t
experiments,75 besides the geometric constraint that the p
ticles are in fact confined betweentwo walls.

To avoid confusion we should stress at this point t
exactness of the PB nonlinear solution at the mean-fi
level, its range of validity and limitations. In this work w
discussed the linearization procedure in the framework of
nonlinear PB and the WS-cell model. The linearization co
stitutes here an approximation to the nonlinear treatm
whose exact results~at mean-field level! may be then com-
pared to the linearized ones, allowing a control over the
proximations and the onset of possible artifacts introdu
by the linearization. The advantage of the treatment base
the linearization of the PB WS-cell model is that predictio
of gas/liquid-like phase separation can be clearly traced b
to artifacts due to the application of the linearization sche
beyond its range of validity. Of course, we are not able
predict correct results for real systems when the~starting!
nonlinear theory itself breaks down. In this case, an even
linearized result mayaccidentallylead to a correct prediction
of, say, phase separation, due to the simultaneous applica
of two inadequate approximations, namely, the mean-fi
PB equation and its subsequent linearization. The fact
PB nonlinear theory for WS-cell models always leads
stable suspensions does not invalidate phase separatio
real systems, which may be due to finite-size effects,intra-
and intercellmicroion–microion,intercell polyion–polyion
and intercell polyion–microion correlations that are ne
glected in the WS-cell mean-field PB picture. In the Donna
equilibrium case, one should also take the microio
microion correlations in the infinite salt reservoir in
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



in
at

o

eo
o

su
en
ar
t
ri-

P
tr

n
S

te

o
om
d
rt

hu
io
as
ns

o
on
uz

fo
in
dl
ub

fi
A

,

J.

er

er
tro
,

fec

nd

ap-
his
on.

l-

ce

E

1864 J. Chem. Phys., Vol. 119, No. 3, 15 July 2003 M. N. Tamashiro and H. Schiessel
account. Questions related to this subject are far from be
complete. In particular, it will be very interesting to look
the effect of charge renormalization54,57,58 on the spurious
predictions of the linearized theory and the inclusion
microionic–microionic correlations.20

Several linearized theories, Refs. 33–40, claim to th
retically explain the very puzzling physical phenomenon
gas/liquid-like phase separation in deionized aqueous
pensions of charged colloids mediated by monoval
counterions.21–23The phase transition predicted under line
ized theories always points toward33,34 the state-independen
volume terms,31,32 which are also responsible for the spu
ous phase separation observed by the linearization of the
WS-cell model. We should remark that the negative con
butions to the state-independent volume terms, Eq.~D11!,
originate from the polyion–counterion interaction free e
ergy, its derivation being thus quite independent of the W
cell model. Therefore, the identification that the sta
independent volume terms drive the phase separation
linearized theories raises questions about the reliability
these results, since all linearized theories might suffer fr
exactly the same shortcomings. The predicted thermo
namical instability seems to be related to mathematical a
facts of the linearization itself and does not correspond t
to a real physical effect. The current theoretical descript
by linearized theories of the experimentally observed g
liquid phase separation in deionized aqueous suspensio
charged colloids mediated by monovalent counterions21–23

seems thus to be unsatisfactory. There is a need of m
faithful theories or models—that should include correlati
effects beyond the mean-field level—to describe this p
zling behavior.
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