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Where the linearized Poisson—Boltzmann cell model fails:
Spurious phase separation in charged colloidal suspensions
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The Poisson—BoltzmaniPB) spherical Wigner—Seitz cell model—introduced to theoretically
describe suspensions of spherical charged colloidal particles—is investigated at the nonlinear and
linearized levels. The linearization of the mean-field PB functional yields linearized Debye—
Huckel-type equations agreeing asymptotically with the nonlinear PB results in the weak-coupling
(high-temperatune limit. Both the canonical(fixed number of microions as well as the
semigrand-canonicdin contact with an infinite salt reservpicases are considered and discussed in

a unified linearized framework. In disagreement with the exact nonlinear PB solution inside a
Wigner—Seitz cell, the linearized theory predicts the occurrence of a thermodynamical instability
with an associated phase separation of the homogeneous suspension intégddusnd dense
(liquid) phases, being thus a spurious result of the linearization. We show that these artifacts,
although thermodynamically consistent with quadratic expansions of the nonlinear functional and
osmotic pressure, may be traced back to the nonfulfilment of the underlying assumptions of the
linearization. This raises questions about the reliability of the prediction of gas/liquid-like phase
separation in deionized aqueous suspensions of charged colloids mediated by monovalent
counterions obtained by linearized theories.2803 American Institute of Physics.
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I. INTRODUCTION surrounding aqueous ionic solution. In view of the many-
éﬁody problem and the long-range nature of the Coulomb
increased renewed interest in view of many industrialNteraction, a statistical-mechanical treatment of the system
applicationsl.'z Paint, petrochemicals, food, pharmaceuticals,'s nontrivial. Within the pnmmve modél(PM) the molecular
cosmetics, diapers, sewage treatment, etc. Man aturel of the solvent is |gnore(degle-ct of van der Waals and
environmental-friendly new materials are hydrosoluble dud'ydration forces and the suspension is treated as a two-
to the presence of ionizable groups that dissociate upon cof®mponent system, comprised of the highly charged large
tact with water. In fact, their hydrosolubility is a result of the POlyions (and its neutralizing counterionsand oppositely
combination of Coulomb repulsion between fixed chargedtharged pairganions and cationsof ionized salt particles.
monomers and the mixing entropy maximized by the mobil-These are immersed in a continuous medium of dielectric
ity in solution of the oppositely charged small counterions.constante and interact through the bare Coulomb potential
Besides technological applications, charged macrowith additional hard-sphere repulsion. In the PM it is implic-
molecules like lipid aggregategbilayers, micelles, and itly assumed that théhard spheres have the same dielectric
vesicles, proteins and polynucleotidécluding DNA and  constant as the solvent, so there are no electrostatic image
RNA) are also of fundamental importance in the biochemis-effects. For symmetri¢in size and chargeelectrolytes the
try of living systems>* Furthermore, due to the availability PM reduces to the restricted primitive mod&PM) and a
of faster computers, many new insights in soft-matter phystheoretical description for dilute solutions may be developed
ics come from Monte Carlo and molecular-dynamics simu-using the traditional Debye—ldkel (DH) theory for
lations of charged system$.These may be partially viewed electrolyte$=° with some improvements taking non-
as controlled theoretical experiments and provide a compléinearities! into account or using integral-equation
mentary approach to analytical treatments. methods'>*2 An extension of these theories for a colloidal
An ubiquitous case is that of mesoscopic charged colloisuspension is nontrivigl~24in view of the huge asymmetry
dal particlesalso called polyions or macroiongnmersed in  petween poly- and microions. Compared to the symmetric
aqueous solution, which polarize the small mobile ions incase, nonlinearities are magnified and dominate in the strong
their vicinity: Microions of opposite sigricounterion$ are asymmetric colloidal limit.
attracted to them, while like-sign microiorisoions are re- A mean-field approach to the PM, represented by the
pelled. The theoretical description of these suspensions r'0isson—BoltzmaniiPB) approximationl,‘r"ls is often used
quires the understanding of the ro_le of the elgctrostatic interi, conjunction with the so-called Wigner—Seit&vS) cell
actions between charged objects mediated by the,odel. Both are discussed in Appendix A—this and all fur-
ther Appendices will be presented in the form of an associ-
¥Electronic mail: tamashir@mpip-mainz.mpg.de ated EPAPS documeft.In view that even with these ap-
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proximations the nonlinear PB equation can only be solvegotential does not preclude priori the existence of a gas—
analytically in few particular cases, it would be very helpful liquid separation, as has been shown by Raipl3* The
to formulate a linearized version of the PB approximation forfocus on the polyion—polyion effective interactions over-
WS-cell models, in analogy to the DH approach to the RPMIooks the important contribution to the free energy due to the
We should remark, however, that the linearized vergamn polyion—microion interactions.
the mean-field levelof the WS-cell model does not include Because most of the alternative analytical calculations to
any intercell (neither polyion—microion nor microion— the Sogami—Ise attractive interaction potential requires some
microion) correlations andntracell microion—microion cor-  linearization procedure, the predicted gas—Iliquid coexistence
relations. This is in contrast to the traditional DH approach toshould be analyzed with caution. In fact, no instabilities have
the (symmetrig RPM, which automatically includes these been yet detected by Monte Carlo simulations in the pres-
correlations. While in the RPM the mean-field contribution ence of(explicit) monovalentounterion€®4® Further inves-
vanishes? in the PB WS-cell model it comes from the tigations with higher polyion valences should still be consid-
intracell polyion—microion correlations. Therefore, a more ered in order to confirm or invalidate these theoretical
appropriate interpretation of the linearized equations to bgredictions. We should mention, however, that preliminary
obtained in the present work is that they correspond to amolecular-dynami¢§ as well as Monte Carfd simulations
expansion about the weak-coupling or high-temperature limitn the presence of explicimonovalentcounterions in the
of the mean-field equations. regime of high-surface charge and low density of polyions—
Two decades after the first experimental evidences o#vhere linearized theories predict phase separation—have
attraction between like-charged spherical colloids mediateghown no sign of any instabilities yet. Moreover, there are
by monovalent counterions in bulk deionized aqueous susndications that the observed van der Waals-type loops are
pensions, its existence is still under dispute. Under the merartifacts due to the linearization, these being drastically sup-
tioned conditions, electrostatic-stabilized colloidal crystalspressed when nonlinearities are reintroduced in the theory by
have been investigated by Iseal.?! revealing the presence the use of renormalized charg®<-urthermore the lineariza-
of empty regiongvoids) inside the crystal. These experimen- tion of the WS-cell semigrand-canonical PB functional—
tal observations were interpreted as a coexistence betweenndnich describegat the mean-field levgkhe system in elec-
dense crystalline phase and a dilute gas phase. Similar voidsochemical equilibrium with an infinite salt reservoir—
were also found experimentally in the fluid ph&8eyhich, vyields negative-compressibility, thermodynamically unstable
in analogy to the critical behavior of symmetric electrolytes,regions which are absent in a full nonlinear treatnfént.
were interpreted as a coexistence between dilgés and  Although many aspects of these artifacts for the semigrand-
dense(liquid) fluid phases. Even fully equilibrated macro- canonical case were already reported in the literdtuie;
scopic gas—-liquid phase separation has been reptrid, cluding a general analysis of the linearization scheme for
though these experimental observations have been attributedrious geometries, electrolyte compositions and arbitrary
to the presence of ionic impuritié8. expansion densitied, we believe that there are still a few
From the theoretical point-of-view attractive interactionssubtle points that need to be clarified, in particular concern-
between like-charged spheres are observed only under spieg the relations between these spurious results and the ther-
cial conditions. For example, they have been seen in Montenodynamic self-consistency of alternative schemes of linear-
Carlo simulations in the presence of multivalent counter4zation.
ions>~2" or when the low-temperature ordering of the dis- The purpose of this paper is to perform a careful and
crete charges is taken into accodhtUnder the conditions detailed investigation about the linearization procedure in
described in the previous paragraph those controversial exhe well-controlled case of the PB WS-cell model. We
perimental findings are either attributed to the presence dbelieve this allows a broader audience—which might not
long-range attractive electrostatic interactions between likebe quite familiar with the more sophisticated treatments
charged polyioné® by the presence of polyelectrolyte involving correlation-functions and integral-equations
impurities® or by state-independent volume teffh¥ ob-  methods®>*%—to understand the underlying physical as-
tained by approximations that involve some kind of sumptions of the approximate linearized theories. First we
linearization: Random-phase approximatidn®> DH pair-  develop a linearization scheme suitable to the canonical
distribution functions augmented by a variational approachfixed amount of microionscase, by adopting an explicitly
for the polyion—polyion interaction®, linear-response ap- gauge-invariant approach. For the semigrand-canonical case,
proximation’” extended DH theory for asymmetric it has been argued by Deserno and vonrerg® that the
electrolytes®® mean-spherical approximatiofMSA)®>® and  occurrence of unstable linearized equations of state depends
symmetric PB and MSA? Even though it has been argued on the way the linearization scheme is performed and on the
by Overbeek and othélsthat the Sogami—Ise attractioris ~ osmotic-pressure definition. By extending our gauge-
due to inconsistencies in their thermodynamic treatment, th@variant approach to the semigrand-canonical ensemble, we
guestion does not seem to be settled yet and discussion tiy additionally to shed some light on this question. We show
still in progress' This attractive potential is in contrast to that thermodynamic stability and consistency are in fact in-
the generally accepted repulsive electrostatic component afependent concepts. The gauge-invariant forms of the equa-
the DLVO**** (Derjaguin—Landau—Verwey—Overb@gkair  tions of state allow to establish an explicit correspondence
potential between like-charged polyions. However, thebetween their nonlinear and linearized versions. We will
purely repulsive nature of the polyion—polyion effective pair show, by using gauge-invariant forms for the electrostatic
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potential, that there is aniquelinearization(about the state- 1 . )

independent zeroth-order Donnan densjttest corresponds BFIN.(N]= g5~ | dr[Vy(n]

to the minimization of the associated linearized semigrand- B

canonical functional, which is also asymptotically exéat 3 3

the mean-field level in the weak-coupling (high- + | &rny(nfin[n.(nNgi1-1}, (@)
temperaturglimit. Therefore, the expansion of the nonlinear where 1=kgT is the thermal energy at temperatdiec ,

functional about the state-independent Donnan densities ' .
. . ! i$ the thermal de Broglie wavelength of the counterions and
originally proposed for the spherical geometry in the pres-

ence of symmetric electrolyte by von Gierget 21%_and {5=Bq“/e is the Bjerrum length witte being the dielectric

. . o constant of the solvent. The integrations are performed over
generalized for arbitrary electrolyte compositions and geom:,

. : . : . the free volumeV=(4=/3)(R®*—a® unoccupied by the
etries with analogous high symmetry in Ref. 50—is not only . Lo
“optimal,” but it is asymptotically exact in the weak- polyion, a=|r| <R. The total charge number densjir) is

coupling limit. The linearized equations, although thermody-ta[]ned Stﬁ;n ncggtgtfvgosnl}'r?;::ihceiggti?‘otr;]:%gf;%npmmﬁ(r)

namically self-consistent with quadratic expansions of the
nonlinear ones, lead to artifacts when their underlying as- B 5
sumptions are not satisfied. In a related papexplicit ana- pN=n.(N= 732 (Irl-a), @

lytical comparison is performed for the planar case, where _ . . . .
the exact nonlinear solutiofat the mean-field levikan be where §° is the three-dimensional Dirac delta function. The

obtained. We additionally show that the thermodynamicaltOtal charge number density is related to the reduced electro-

equivalence between the linearized canonical and semigranaEatic potentiak/(r)= g (r) by the (exac Poisson equa-

2 _ . . . . .
canonical formulations of the problem turns out to be non-1on: V7y(r)=—4mtgp(r). Functional minimization ot~

trivial because of the Donnan effetAppendix G, the en- with respect to the counterion profite, (r) under the WS-

semble invariance of the linearized equations only beinqcle", charge-'neutrallty constra|rytd3rp(r):'0fse.e the der|-'
possible with the inclusion of quadratic contributions in the ation making use O_f a Lagrange multl_phe_r in Appendix
linearized expansion densities. A—yields the equilibrium counterion profile in terms of the
The remainder of the paper is organized as follows: mBoItzmann factor
Sec. Il the salt-free model is introduced and the associated — () Y
nonlinear equations are briefly presented. In Sec. lll the lin- 7 (r)= ze = ncexm_(,//) _"b(r)],
earization of the appropriate functional is performed, consid- JPre " exd (y)—(n)])
ering three distinct physical situations: The salt-fleethe (3
presence of neutralizing counterions graystem introduced ne= (M. (1)) = E
in Sec. Il, with fixed amount of added monovalent Sal- \
nonical ensembjeand in electrochemical equilibrium with \yhere we introduced theffective average density, of
an infinite monovalent salt reservoisemigrand-canonical qnterions in the free volumeé unoccupied by the polyion
ensemblg Some concluding remarks are presented in SeGore, and the brackets denote unweighted spatial averages
IV. S_e\_/eral techr_ucal and sut?tle points are dlsgussed in morgyer v, (X(r)y=Sr X(r)/fPr. Substituting the equilib-
detail in Appendices A—I, which are presented in the form ofijm counterion profilar, (r) into the Poisson equation leads
an associated EPAPS documéht. to the PB equation, that needs to be solved numerically in the
case of spherical polyions.
The Helmholtz free energfs=F[n_(r)], is obtained
by evaluating the functionalF at the optimized profile
In this section we shortly summarize the framework inn. (r)=n,(r). It can be shown—cf. Sec. 3 of Ref. 18—that
which the linearization procedure will be performed. For athe nonlinear osmotic pressufe=—dF/dV (over pure sol-
detailed presentation and discussion—which emphasize th&nt is simply given by

II. NONLINEAR EQUATIONS

advantages of the use of a Lagrange multiplier leading to an P=T.(R 4

.. . . . B n+( )i ( )
explicitly gauge-invariant approach—we address the inter-

ested reader to Appendix A. which is the well-know WS-cell mean-field result that the

A suspension of polyions, whose hard cores occupy &alt-free osmotic pressure is related to the counterion density
volume fractiong, is treated within the WS-cell model, in at the WS-cell boundar§>*r=|r|=R. Henceforth, to sim-
which the physical properties of the system are studied bplify thg notation, we will omit the bar to denote equilibrium
considering only one fixed polyion and its neutralizing coun-Properties.
terions inside a WS cell. We will restrict ourselves to the case
of spherical polyanions of radius—each carrying a total
charge—Zq distributed uniformly on its surface, witth be-  ||. LINEARIZATION SCHEME
ing the elementary charge—inside a concentric spherical W
cell of radiusR=a/ . The generalization to other highly
symmetric geometries is straightforward, cf. Ref. 50. Let us introduce a linearized free-energy functiofigl,

We introduce the mean-field PB Helmholtz free-energythat will lead to DH-type equations of state for the salt-free
functional 7[n(r)] associated to a single spherical WS cell model system defined in the previous section. We start by

i. In the presence of neutralizing counterions only
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truncating the expansion of the nonlinear PB Helmholtz freeform counterion-density ideal-gas law, while the next term
energy functionall) to the quadratic order in the difference corresponds to the mean-field electrostatic correctrose
n,.(r)—ng to intracell polyion—microion correlations. In Appendix C it
1 is shown that the linearized osmotic press{@ecan be also
BFouln.(r)]= _f ErivVe(n?+2z[In(ng3)—1] obtained by dormal differentiation of the linearized Helm-
8mlg holtz free energyFpy and that it also corresponds to a qua-
n.(r) dratic expansion of the nonlinear PB osmotic pressdireAt
+ncln(ncgi)J' d®r ——1} the end of the next subsection we shall find that for suffi-
Mo ciently high surface charges or low temperatures the linear-
1 5 2 ized osmotic pressur@) is no longer a monotonic function
+ Encf d°r (5)  of the WS-cell free volum&/, which would imply a thermo-
dynamical instability and an associated gas/liquid-like phase
Functional minimization of the linearized functiondipy  separation of the system—in contrast to the full nonlinear

with I’eSpeCt t0n+(l’) under the WS-cell Charge'neutrality theory’ Wh|Ch does not predict any |nstab|ﬁfy
constraint,f drp(r) = 0—performed in Appendix B with the

use of a Lagrange multiplier—leads to the linearized equilib-
rium counterion profile and to the linearized DH-type equa-
tion for the electrostatic potentiak(r)

N (N=nd1+((r) =], (6)

ny(r) 1
nC

B. In the presence of neutralizing counterions
and added salt (canonical ensemble )

Let us now add a symmetric monovaléftl) salt to the
5 ) Ztg system. We treat all microions at the same level of mean-
V() =L = (1) = 11+ —7 *(|r[=a), () field approximation, describing them by the average local
number densities1.(r). We will not distinguish between
with the inverse Debye screening length defined in terms ofounterions and positive ions derived from the salt dissocia-

the averaged counterion density tion. Therefore,n. (r) accounts both for counterions and
K= K= m_ ®) positive salt iongcationsg, while n_(r) represents the nega-

tive coions(aniong. In terms of these number densities, the

One should note that this is different from the standardotal charge number density and the total microionic density
linearized-PB treatment of the spherical WS cell—associategead, respectively,

with the definition of a renormalized charje-where the

Debye screening length is defined in terms of the WS-cell Z

boundary densityr, (r =R). A detailed discussion compar- (D =N+(N=n-_(r)— mée(m —a),

ing the two different linearization schemes—the standard

one and the approach considered here—is performed in Agnd

pendix B, where the explicit solution to the electrostatic po-

tential of the linearized DH-type Ed7) is also presented.
The linearized Helmholtz free energy, Fpu

=Fpul N4 (r)]equir is obtained by evaluating the linearized

functional Fpy, Eq. (5), at the optimized profilen . (r) sat-

isfying Egs.(6) and(7), and it is given explicitly by Eq(B9) Q.

of Appendix B. The linearized osmotic pressumer pure ce=(n=(N)=-~, Qy=Z+nyV, Q.=nyV, (11

solvenj of the colloidal suspension follows from the nega-

tive total derivativeof the linearized Helmholtz free energy WherenS is thea priori known effective average salt concen-

Fpy with respect to the WS-cell free volum¥, Ppy  tration andQ. are the fixed total number of positive and

n(r)y=n,(r)+n_(r). (10

The effective average uniform densities of positive and nega-
tive microions are given by

=—dFpy/dV, negative microions inside a WS cell. Within the cell-model
Zrlg A4(kR, ka) approximation the salt ions are evenly distributed between
BPpu=ng 1+ — different cells and the average salt concentratigris the
4A5(kR, ka) Ka same for each identical WS cell. We introduce the dimen-
X[A;(kR, k&) —A,(kR, ka)] sionless parameter
—4ka 1+§K2a2—K2R2 —gK3R3 ] (9) EQ?=E—§, (12)

where we introduced the functiona,(u,v)=A,(u)&  which measures the contribution of the salt ions to the ionic
—A_(u)e™’, Ay(u,v)=A,(U)A_(v)—A_(u)A,(v), and  strength in the suspension
A.(u)=(1%xu)e"". To obtain Eq.(9) one should take into

account both the expliciR dependence as well as the vol- I=2%(n.+2ng9= 3(1+2s)n,. (13
ume dependence of the screening lengtht when com-
puting the total derivative, did=1/(4wR?) 9/9R As in the previous subsection, we expand the nonlinear

—«/(2V)dl dk. The first term of Eq(9) represents the uni- PB Helmholtz free-energy functional
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1 5 ) 5 the right of the total derivative emphasizes that the parameter
BF[n.(r)]= mf dr[V(r)] +i:2+ f d>rni(r) s remains fixed during the total differentiation with respect

toV
31
X{In[n;(r)& -1}, (14 BPEY &)
about the average uniform densitigd) up to quadratic or- 7l - R
der in the differences . (r)—c.., to obtain the linearized =(1+2s)n [ s Ax(kR,ka)
Helmholtz free-energy functional 4(1+2s)A5(kR,ka)|  «a
BForln=(r)] X[A1(kR, k@) —Ay(kR,ka)]
1 3 2 2,2 2p2 4 3 3-
=—f Brivy(n?+ > Velined)—1] —4ka| 1+ - k?a®>— k’R?| — - k°R3| |, (20)
87T€B i=+ 3 3 ]
n( ) where « is a function of ,s) through Eq.(19), and the
+ E ¢; In(c;¢; )f dr } functionsA,,A, are defined after Eq9). In Appendix D it

is shown that the linearized canonical osmotic press20g
2 corresponds to a quadratic truncation of the nonlinear PB
+ 2.2 fds , (15  canonical osmotic pressuf?2).

In the vanishing volume fraction of polyion@nfinite-
where(.. are the thermal de Broglie wavelengths of cationsdilution) limit, ¢=(a/R)3—0, the linearized canonical os-
(including the positive counterionand anions, respectively. motic pressure has the asymptotic behavior

Functional minimization of the linearized functional

n(r

Foul n(r)] with respect tan..(r) under the WS-cell charge- pPan— ‘9(1+§S)¢ _ 4 P13
neutrality constraint 4maly 10(1+2s)
402 2/3

f d* p(r)=0, or f dr[n.(n—n_(n]=2z, (16 —175% T O],
—performed in Appendix D with the help of a Lagrange 3Z¢g
multiplier—leads to the linearized equilibrium density pro- 0= a (21)
files and to the linearized DH-type equation for the electro-
static potentiaky(r) This leads to the asymptotic linearizednonicalinverse iso-

thermal compressibility

dg Pcoaﬁ')

ni(r)=ci[li(1p(r))lt//(r)], 17
,BXcaiE”p(d—np

1 ze
V20 =k (D)~ (D)~ 555+ 52 0 M~ a)

(19 20 3
_ ) ) =Zny(1+28)|1- 55 ¢
where the inverse of the Debye screening length is now 15(1+2s)
given by
23
k= \Brlal = VAmla(l125)Ne= K1+ 25. (19 105‘/’ +O( ‘f’)} (22

As discussed in Appendix D, the infinite-dilution limiRk( Wherenp=(47-rR3/3)*1 is the polyion density of the suspen-

— ) of the linearized solution to the electrostatic potentialsion. In the presence of added salt, the stability of the sus-

#(r) leads to the repulsive electrostatic component of thgension is associated to the positiveness of the eigenvalues

traditional DLVO** interaction potential. of the associated Hessian matrix—as discussed in Appendix
The linearized Helmholtz free energy, Fpy H—instead of simply being related to the positiveness of the

= Fpul N+ (r)lequi» iS oObtained by evaluating the linearized canonical inverse isothermal compressibilj‘tya}], as com-

functional Fpy[n-(r)], Eq.(15), at the linearized optimized pared in Fig. 1. The infinite-dilution asymptotic behavior of

profilesn..(r) satisfying Eqs(17) and(18), and it is given the functionX (¢,s), Eqg.(H2)—whose vanishing defines the

explicitly by Eg. (D8) in Appendix D. In this Appendix we linearized canonical spinodal line—reads

also discuss the correspondence between the infinite-dilution

limit (R—~) of the excess Helmholtz free energy and the S(¢h,s)=— 0¢ 1— 2_(1+ 2s) p13
state-independent volume terms obtained by Rial,>* 1+s

which have been claimed to drive a gas—liquid phase sepa- 462

ration in dilute deionized aqueous colloidal suspensions. The 525(5 45—45%) p?P+ O( ) |. (23

linearized canonical osmotic pressure of the colloidal sus-
pension follows from the negativetal derivativeof the lin-  In contrast to the semigrand-canonical césebe treated in
earized Helmholtz free enerdypy with respect to the WS- the next subsectionthe suspension is thermodynamically
cell free volumeV, but keeping fixed the total amount of stable in the infinite-dilution limit for any finits (canonical
salt, P5i(¢,8)=—(dFpy/dV)s, where the subscript to case, lim, ,3($,s)>0. However, as exemplified by the
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gions between the dilute gd§&) and the dense liquidlL)
phases—limited by the binodal lines, not shown in Fig.
1—must be determined under the constraints of constant
chemical potential of polyiong., and of salt particleg.
Further details about how to determine the binodal lines are
given in Appendix D. However, because the critical behavior
is a spurious result of the linearization, it is not worthwhile
to construct the phase diagrams in detail and we restrict our-
selves only to present the spinodal lines in Fig. 1. Since the
] criticality condition defines where the binodal and the spin-
¢ odal lines meet, the location of the critical points does not
require computation of the binodal lines. In Appendix D we
FIG. 1. Spinodal linegsolid line9 associated with the linearize#nonical  also discuss possible charge-renormalizafish>®effects on

osmotic pressur@gy, Ed. (20), in the §=3Z(g/a vs volume fractiond  the spurious phase separation predicted under linearization.
=(a/R)® plane. As explained in Appendix H, they correspond to lines of

vanishing determinant of the associated Hessian matrix, and—except for the ) o )
salt-free case-do not coincidewith the lines of vanishing linearized canoni- C. In contact with an infinite salt reservoir

cal inverse isothermal compressibility.,,=0 (dashed lines In the gray  (semigrand-canonical ensemble )
region the linearized isothermal compressibility of the salt-free ) sus- . . . .
pension becomes negative, leading to a coexistence betweeiGyasd Let us now consider the colloidal suspension in electro-

liquid (L) fluid phases. The black circle represents the salt-free critical pointthemical equilibrium with an infinite salt reservoir of fixed
(see main text for more detallsNote that this is in contrast to the full 1 densityn,. The suspension is separated from the infi-
nonlinear treatment, whichlwayspredicts positive compressibilitigRef. . ir b h bl b Th |
56). Addition of monovalent salenhances the instabilithy shifting the nite re_ser\_/0|r y a se_mlpermea e _mem rane. e solvent
canonical spinodal lines to lower values @thigher temperatures or lower and microions(counterions and salt iongan pass through
polyion valence as labeled by the two solid lines with increasing values of the membrane, but not the large polyions. This gives rise to
s This is In contrast o a naive analysis based only on the vanishing of they, jmpalance in the osmotic pressure across the semiperme-
canonical isothermal compressibiliggashed lines which deceptively sug- bl b hi ilibri b h .
gests exactly the opposite—namely, that addition of monovalentveaild able membrane. This gqu!| rnum between the suspension
stabilize the suspensicagainst phase separation. and the salt reservoir is referred to as a Donnan
equilibrium®®-%1Like in the previous subsections we will
consider only the case of monovalent counterions and sym-
salt-free case in Fig. 2, for finite densitié+0) and suffi- metric monovalentl1:1) salt.
ciently large values ofj, the linearized canonical osmotic The effective average salt concentration in the colloidal
pressurePSy] is no longer a convex function of the volume suspensionps=(n_(r)), does not coincide with the reser-
fraction ¢, implying thus the onset of a thermodynamical voir bulk densityn, and is not knowra priori. A nontrivial
instability. For salt-free suspensions={0), the associated question is its dependence with the physical parameters of
critical point—represented by the black circle in Fig. 1—is the system, e.g., bulk salt concentratiof, polyion radius
located at a, polyion valenceZ and volume fractionp= (a/R)3. At the
WS-cell PB mean-field level of approximation this problem
ci=0.008586 189, 0 =44.902477094-, (24 |, already been considered in the literdtf2and it is
which is determined by the criticality conditionPd}}/d¢  summarized in Appendix E. In agreement with exact and
=d?P&dp?=0. We should stress that the coexistence regeneral results for WS-cell modefsthe nonlinear osmotic
pressure is a monotonic increasing function of the volume
fraction ¢—hence the nonlinear treatment does not predict

6

0 =
10

0.20 any thermodynamical instability.
Compared to the canonical case treated in the previous
z 015 ¢ . S L
Qfl subsection—when the amount of microions is fixed and
Q 010y known a priori—there are two main differences to perform
NN““ 0.05 | the linearization in the Donnan-equilibrium problem. First,
g ot because the Donnan equilibrium is established under con-
<~ : stant electrochemical potential of microions, the natural ther-
—0.0%0_5 I T modynamical ensemble to perform the calculations is the

semigrand-canonical one

¢

FIG. 2. Salt-free §=0) linearized osmotic-pressure isotherms as a function Qpyp[n=(r)]=Fpuln-(r)]— Z Mi f d°r ni(r),

of the volume fractionp= (a/R)®. From top to bottom the isotherms cor- ==

respond tofd=41,43f;;=44.902 477--(bold line), 47 and 49. In the gray Bus= |n(nb§i) (25
region the salt-free linearized isothermal compressibilify; is negative, - =7

which would imply a thermodynamical instability that leads to a phaseyhere we impose the equality of the microion electrochemi-

separation between two fluid phases: A lgw(dilute) gas(G) and a highe - L . .
(dense liquid (L). The black circle represents the salt-free critical osmotic cal potentlals inside the colloidal suspension, , to the

pressure and the dashed curve defines the salt-free spinodal line ih the (mea_n-field chemical pOtef‘tim _Of ide?" ‘gases of Uniform
X ¢ diagram(the s=0 line in Fig. 1. densityn,, for both types of ions in the infinite salt reservoir,
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B~ tIn(n,2). The second difference is that the effective av- —x-Q-—in contrast to perform it at the level of the func-
erage uniform densities of positive and negative ions, abodfonals. An ensemble-invariant treatment of the Donnan
which the linearization should be performed, vary in a non-€ffect—that relates the total charges inside the WS Qell
trivial way as the WS-cell free volum¥ is changed. In = Vc.~Vc? with the average counterion density and
Appendix F it is shown that the self-consistent linearizedthe bulk salt concentratiomy—requires at the linearized
average densities for the Donnan problem are given by thievel the use ofc’?, Egs. (29), as expansion densities—
state-independent zeroth-order Donnan densities instead of the simplest"), Egs.(26). The inclusion of the

5 . quadratic contributions into the expansion densitéS,
Vg +(2np)“Ene however, do not improve the agreement between the linear-
2 1

ized and nonlinear equations, as can be shown by the explicit

) . ) _analytical comparison in the exactly solvable planar Gase.
wheren.=2Z/V is the effective averaged counterion dens'tyHowever this can only be verifieal posteriori

and f[he superscript io(il? emphasize_s th_e fact that they were Once again, functional minimization of the linearized
obtained gnder a Ilne_zgrlzed approximation. These Corre_sr’or%migrand—canonical function&lpu[ N (r)] with respect to
to the uniform densities that the system would have in the, 1y’ ynder the overall WS-cell charge-neutrality constraint

infinite-temperature {g=0) Iimif[ under the constraint of (16)—performed in Appendix F with the help of a Lagrange
overall WS-cell charge neutrality1€). We should remark . injier—leads to the self-consistent linearized averaged

that theydo not correspondo the effective averages of the ansities(26), to the linearized equilibrium profiles and to
full nonlinear PB densitie$E2) the DH-type equation

nZ+(2np) (e’ (e "Dy +n,
ct=<ni<r>>=¢ : <2 e o N () =c@[L=(y(r) = ()], (30

c®= (26)

because of the nonvanishing quadratic and higher-order ( ) ) Zlg
=2) contributions of the electrostatic potential differences Vap(r) = Lp(r) —((r)) — 7]+ Ez—é\g(|r| —-a), (31

8,(N=[{)—(n]". (28)
where the parameter
The nonlinear expression far., Eq. (27), has been ob-

tained by using an explicitly gauge-invariant formulation of cM_ () n

the problem(cf. Appendix B. The advantage of these forms n= s = c (32
. . . . . . (EDIIPN D) J

is that the linearized expansion densitis) are simply ob- cHCT Yng+(2ny)?

tained by taking their potential-independent, infinite- o .
temperature {g=0) limit, where the electrostatic-potential measures the.relatlve |m_portance of _the counterions to the
differences vanish, lim) _.o 8,(r)— 0. Itis also clear that any  ionic strength in the colloidal suspension

other choice for the expansion densities will not lead to the

exact potential-independeritnfinite-temperature limit of R e YN ¢ NU Y v ary-werv SN WL
the nonlinear equations. As also derived in Appendix F, the I= E[C+ = 2 Net(2ny)°= 27 -2

" . 7
Donnan average densities, E(&6), do indeed correspond to (33)

the functional minimization of the corresponding linearized
semigrand-canonical functional. We note that Deserno angtyrthermore, théeffective Debye screening length ! in
von Grinberg® define an optimal linearization point the colloidal suspension

op—related to the above gauge-invariant expansion densi-

ties by c(tl)=nbe$‘/’opt—by using arguments based on the

plausibility of this choice. They show that any other choice =~ K =8m{gl=
for the linearization point would lead to conflicting inequali-
ties involving nonlinear and linearized averages. Finally, we

should mention that even though the uniform expansion den> always shorter than the Debye screening Ieng’ghl

sities ¢, Egs. (26), are internally self-consistentwithin = L8 Leny a.SSOC'at?d with the bUIk. salt_ concentratig)
- . . L in the reservoir, showing that screening is enhanced in the
the semigrand-canonical ensemhlmder linearizationglo-

. . . . . colloidal suspension compared to the salt reservoir.
bal self-consistencyensemble invariangewill require the

. . . The linearized semigrand-canonical potentidlpy
use of the quadratic truncation of the nonlinear averages [12(F)Jacur, is obtained by evaluating the linearized
27), ¢ =cP+O[(85(N)], o DAL ) Jequil Y J

semigrand-canonical function@lp[n-(r)], Eq.(25), at the
Jn2+(2n,)%el%2M) + n, linearized optimized profilea-.(r) satisfying Eqs(30) and

> , (29 (31, z_ind it_ is given_ explicitly by_ Eq(F11) _of Appendix F.

The linearizedsemigrand-canonicabsmotic pressure fol-

as the self-consistent averaged densities, as discussed in dews from the negativeotal derivative of the linearized
tail in Appendix G. Another way to look at this subtle point semigrand-canonical potential with respect to the WS-cell
is by performing the Legendre transformation directly atfree volumeV, but keeping fixed the microion chemical po-
level of the thermodynamic potentiaf)py=Fpy— 1+ Q.  tentialsu-, PE(¢,ny)=—(dQpy/dV),

= > K2, (34)

2
Xe
7

cP=
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2 3 f
BPES( b =% 1+ (7= 1)+ rAZ;f;z—nKm ’
X[M[Al(KR ka)—Ay(kR,ka)] "
Ka ’ ' 0
2k%a v
—4ka| 1+ 377 — k°R?

5 - 10

_4< —3—7]2 k°R ], (35

FIG. 3. Spinodal lines associated with the linearizednigrand-canonical
wheren and« are functions of §,n;) through Eqs(32) and  osmotic pressure in the=3Z¢z/a vs volume fractiong=(a/R)? plane.
(34), respectively. The prefactor of the right-hand side repreDas.hed Iines,y(;glcc= 0, are assogiated .to Ithe iAnEelrnally self-cons.istent 0s-
sents the ideal-gas Donnan osmotic pressure taking only tHBOtC Pressurésy, Eq. (35), while solid lines =0, are associated to

gc
i - : . T . 5 sqc
WS-cell charge neutralityl6) into account the globally self-consisterfensemble-invariahiosmotic pressur@g);, Eq.

(G13. The spinodal lines delimit the spurious unstable region that extends
to lower values of¢. To allow a comparison with the canonical caség.

1), we also show the salt-free critical poitiilack circle and the salt-free

Ne (Kba‘= 0) unstabl_e gray regiqn. In the salt-free limitkyga<<1) the

- C(+1)+ cW= /ncz+ (2ny)2. (36) semigrand-canonical spinodal line reduces to the salt-free one, although for
7 any nonvanishing,a eventually it will bend to the zero-temperature critical
point at (¢¢it, 0rit) = (0,0). In agreement to the canonical case, an increase
of the salt-reservoir bulk density, in the semigrand-canonical case also

In analogy to the salt-free, E(ﬂ9), and the canonical, Eq. er)ha_nces the |nstab|||l>a_s can be seen f_rom the d|ffe_ren_t splnoda! lines
with increasingx,a. A typical nonmonotonigbut nonoscillating osmotic-

(20), cases, the first term @85) represents the ideal-gas law pressure isotherm is presented in Figdatted curvg of Ref. 50. See also
associated to the state-independent zeroth-order Donnan dexppendix | for additional comments.

sities, while the remaining terms correspond to the mean-
field electrostatic corrections due to the microionic polariza-

tion around the polyion. We should note that the second term L dpPZY

inside curly brackets depends gonly and is thug g inde- BXsgc="p dn

pendent. This could suggest that the zeroth-order Donnan Pk

ideal-gas law, lim__o BPgli=nc/7, would not be recov- e 543 233

ered in the weak-coupling limit. Thi§g-independent term, = _anas[er 256 mz_lﬂ
however, is indeed necessary to cancel the contributions that

arise from the last term in thég—0 limit in order to give +0[¢*, 00~ *Pexp( —2a¢™ )], (37

the correct potential-independent infinite-temperature limit__yritten in terms of the dimensionless variables

Mor(_eover, it is shown in Appendix E that the linearized =3Z(¢5/a anda= k,a—is always negativein contrast to its
semigrand-canonical osmotic press(6) corresponds 0 a  cangnjcal counterpagy..., Eq.(22), obtained at fixed ratio
quadratic expansion of the nonlinear semigrand-canonica

osmotic pressur¢E3). The ensemble equivalence between |, Fig. 3 we present the linearized semigrand-canonical
the linearized osmotic pressurBgi(¢,s) and P3li(¢4.M).  spinodal lines, defined by the vanishing of the linearized
Egs.(20) and(35), is nontrivial due to the Donnan effect. As semigrand-canonicalinverse isothermal compressibility,
discussed in detail in Appgnd|x G, the Imeqnzed LeggndreX;glcz 0. We note that Figs. 1 and 3 cannot be, strictly speak-
transformations=s(¢,ny) given by _Eq-(GCg) is not suffi- ing " interpreted as phase diagrams. Instead, their spurious
cient to ensure ensemble invariancBg #,5(4,nb)]  spinodal lines should be viewed as an indication of the range
#Ppli(¢.np), requiring additionally the inclusion of qua- f applicability of the linearized theory, which is asymptoti-

dratic contributions in the expansion densities—i®?,  cajly exact (at the PB-WS-model levelin the high-
Egs.(29), should be u(%ed as expansion densities for the lintemperature limit. Furthermore, they illustrate that similar
earization, instead af-’, Egs.(26). predictions of gas/liquid-like phase separation at low tem-

The linearized osmotic-pressure difference between thgeratures or high surface charges—which have also been
colloidal suspension and the infinite_salt reservoir obeygyredicted by other linearized theories, Refs. 33—40—are ob-
BAPpy=BPRl—2n,= BPRli— (ne/7) V1= %°, with BPEY  tained for a thermodynamically self-consistent linearized
given by Eq.(35). In Appendix | we show that the linearized theory.
semigrand-canonical osmotic-pressure differegeePpy is
intrinsically thermodynamically unstable in the infinite-

I S . . . IV. CONCLUDING REMARKS
dilution limit and we compare with expressions previously

obtained by Deserno and von ®herg® In particular, the We investigated in detail the linearized PB spherical
infinite-dilution (¢—0) asymptotic linearizedsemigrand- WS-cell model, by performing a linearization scheme con-
canonicalinverse isothermal compressibility sistent with quadratic expansions of the appropriate nonlin-
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ear thermodynamic functional. By using gauge-invarianttion, this being thus the main motivation of our study.
forms of the electrostatic potential, we have shown that the The linearization scheme presented here, though being
linearized osmotic pressures correspond to quadratic expafully thermodynamically self-consistent, shows that expres-
sions of the corresponding nonlinear versions for the thresions obtained within a linearized framework should always
cases investigated: In the presence of neutralizing counterbe interpreted with caution, since they may lead to artifacts
ons only(salt-free casg in the presence of fixed amount of when applied outside their range of validity. As a further
added salt(canonical cageand in electrochemical equilib- example where the linearization clearly yields artifacts, we
rium with an infinite salt-reservoifDonnan equilibrium, mention the attractive component to the effective interaction
semigrand-canonical cgse between two confined colloids induced by charged walls,
Contrary to previous work®*°we adopted an explicitly predicted under linearized theSfybut in violation to the
gauge-invariant formulation with the inclusion of a exact (at mean-field level nonlinear PB repulsiof? Al-
Lagrange-multiplier term to account for the charge-neutralitythough earlier numerical analysis of the nonlinear solution
constraint. The associated Lagrange multiplier was introwere in agreement with the linearized theftthese were
duced in Appendices A—F in order to obtain the equilibriumsoon ruled out under very general conditi6nhe disagree-
profiles by functional minimization of the corresponding ment with the rigorous nonlinear results might be attributed
functional. In the case of the Donnan equilibrium, it is shownto flaws in the numerical calculations. Attempts to include
that the minimization of the associated linearized semigrandionic correlations lead indeed to attractive contributions to
canonical functional leads indeed to the state-independerthe effective interactiofi’®® but they are doubly-screened
zeroth-order Donnan densities as the self-consistent expaand thus are not able to overcome the repulsive electrostatic
sion averages for the linearization. Therefore the optimalityDLVO***4component. Therefore, experimental evidences of
of the optimal expansion pom?opt introduced by Deserno confinement-induced attractioh’* and the occurrence of
and von Graberg® can be understood as corresponding to anetastable superheated crystatsannot be explained at the
self-consistent minimization of the linearized functional. We PB mean-field level and still remain an open questibit.is
would like to emphasize that the derivation of the expansiorioteworthy that an explanation for the apparent attraction
densities for the linearization, performed in Appendix F, doedetween like-charged colloids nearsingle wallhas been
not correspond simply to an alternative way of obtaining theecently proposed by Squires and Brenffewhere the at-
results presented in previous wofRs? In particular, we traction arises from nonequilibrium hydrodynamic flows.
show in Appendix G that ensemble invariance of the linear-The estimated magnitude of this effect, however, seems to be
ized semigrand-canonical equations requires the inclusion dp0 small to account for the attraction observed in the
quadratic contributions in the expansion densities and in thexperiments; besides the geometric constraint that the par-
linearized Legendre transformation, a point that could not bédicles are in fact confined betweéwo walls
explored in Refs. 49 and 50. To avoid confusion we should stress at this point the
It is shown that the self-consistent linearized osmoticexactness of the PB nonlinear solution at the mean-field
pressure in the semigrand-canonical ensemble—as alreatgvel, its range of validity and limitations. In this work we
pointed out in the literatuf@®*>—leads to artifacts in the discussed the linearization procedure in the framework of the
infinite-dilution, high-surface charge and strong-couplingnonlinear PB and the WS-cell model. The linearization con-
limits, where it predicts negative isothermal compressibilitiesstitutes here an approximation to the nonlinear treatment,
and negative osmotic-pressure differences between the cokhose exact result&@t mean-field levglmay be then com-
loidal suspension and the infinite salt reservoir. Attempts tgoared to the linearized ones, allowing a control over the ap-
define a fully stable linearized equation of stéfte symmet-  proximations and the onset of possible artifacts introduced
ric electrolyte$ based on the partial derivative of the linear- by the linearization. The advantage of the treatment based on
ized semigrand-canonical potential with respect to thehe linearization of the PB WS-cell model is that predictions
volume® cannot be justified in our approach based on theof gas/liquid-like phase separation can be clearly traced back
minimization of the linearized functional, its stability being a to artifacts due to the application of the linearization scheme
fortuitous result. This can be seen most clearly in the anabeyond its range of validity. Of course, we are not able to
lytically tractable case of two infinite charged planes in elecpredict correct results for real systems when ts&rting
trochemical equilibrium with an infinite salt reservoirlt ~ nonlinear theory itself breaks down. In this case, an eventual
turns out that the artifacts obtained by the linearization ardinearized result magccidentallylead to a correct prediction
not related to questions like thermodynamic self-consistencygf, say, phase separation, due to the simultaneous application
ensemble invariance or possible alternative linearizedf two inadequate approximations, namely, the mean-field
osmotic-pressure definitions, but rather are associated to tHeB equation and its subsequent linearization. The fact that
application of the linearization outside its range of validity. PB nonlinear theory for WS-cell models always leads to
Whereas in our treatment we are able to clearly identify thestable suspensions does not invalidate phase separation in
origin of the thermodynamical instability, the approximationsreal systems, which may be due to finite-size effeictisa-
involved in the linearized theories of Refs. 33—-40 are farand intercell microion—microion,intercell polyion—polyion
from being under control. Because the possible reasons fand intercell polyion—microion correlations that are ne-
their failure are indeed very subtle, we believe our investigaglected in the WS-cell mean-field PB picture. In the Donnan-
tion about the linearization procedure in the well-controlledequilibrium case, one should also take the microion—
case of the PB WS-cell model sheds some light on this quesnicroion correlations in the infinite salt reservoir into
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