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Electrostatic complexation of spheres and chains under elastic stress
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We consider the complexation of highly charged semiflexible polyelectrolytes with oppositely
charged macroions. On the basis of scaling arguments we discuss how the resulting complexes
depend on the persistence length of the polyelectrolyte, the salt concentration, and the sizes and
charges of the chain and the macroions. We study first the case of complexation with a single sphere
and calculate the wrapping length of the chain. We then extend our consideration to complexes
involving many wrapped spheres and study cooperative effects. The mechanical properties of such
a complex under an external deformation are evaluated. ©2001 American Institute of Physics.
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I. INTRODUCTION

The complexation of polyelectrolytes and opposite
charged macroions is a primary ingredient in biological p
cesses. The nonspecific part of the interaction between
teins and DNA is governed by electrostatics. A well-know
example of this form of complexation is the association
DNA with oppositely charged octamers of histone protei
an essential step in chromosomal DNA compaction.1 Com-
plexation of macroions is also encountered in several te
nological applications. For instance, the complexation
synthetic polymers with colloidal particles2,3 and charged
micelles4 is of practical importance for modifying macroio
solution behavior.

A number of experimental5–8 and theoretical studies9–13

have demonstrated that complexation of highly charged m
roions is governed by an unususal electrostatics mechan
counterion release. The electrostatic free energy of assoc
tion of oppositely charged macroions is dominated by
entropy increase arising from the release of counterions
had been condensed onto the macroions before associa
This electrostatic free energy gain must compete with a
energy cost induced by deforming either or both of the m
roions so as to bring the fixed macroion charges of oppo
sign in close contact.

A simple example of this competition, first discussed
Marky and Manning,14 is the association of a charged sphe
with an oppositely charged semiflexible chain. IfR is the
radius of the sphere,l P the persistence length of the cha
~i.e., the bending modulus of the chain equalskBTlP with
kBT the thermal energy!, andl the electrostatic free energ
gain per unit length of adhesion, then the free energy cos
association is

a!Electronic mail: heli@mpip-mainz.mpg.de
7240021-9606/2001/115(15)/7245/8/$18.00
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F~ l !>S kBTlP

R2 2l D l 1O~ l 2! ~1!

with l the length of chain wrapped around the sphere. T
first term in the brackets represents the bending energy
length of the adsorbed chain, taking into account the fact
its curvature is of the order of 1/R.15 Under conditions where
counterion release dominates~i.e., high bare charges!, l is of
the orderkBT/b with b the spacing between charges alo
the chain~cf. the discussion in Sec. II!. According to Eq.~1!,
complexation starts whenl exceedskBTlP /R2. It would ap-
pear reasonable that wrapping continues until the charg
the wrapped part of the chain has compensated the charg
the central sphere. The counterion release mechanism
duces a surprise: An analysis10 for this case found that, for
small enough persistence lengths, the chain/sphere com
is overcharged: more chain is wrapped on the sphere th
required for charge compensation. ‘‘Charge-reversal’’ n
mally is associated with short-range correlations between
charges,16 but here it is again due to entropy increase of t
counterions.

In the present paper we extend the above-mentio
analysis to examine complexation of a flexible charged ch
placed in asolutionof oppositely charged macroions, assum
ing that the complex adopts a ‘‘beads-on-a-string’’ geome
~This particular geometry is, for example, encountered
DNA/histone complexes at low salt concentrations!. A simi-
lar system of charged spheres and chains was also rec
investigated by Nguyen and Shklovskii.17 Their study fo-
cuses on weakly charged systems where counterions are
important~a recent preprint of their work also considers t
role of condensed counterions in highly charged systems18!.
As we discuss in the conclusion of this paper their syst
shows nevertheless many features that are characterist
our system. It should be noted though that such simple m
els are only useful for a discussion of the generic aspect
5 © 2001 American Institute of Physics
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complexation of charged linear macromolecules with sph
cal macroions. For any particular case, the specific aspec
the molecular interactions for that situation must be
counted for.

The central claim of this paper is that whereas compl
ation of a chain with a single sphere leads to spontane
overcharging, complexation in a solution of spherical m
roions leads to spontaneousundercharging, even though both
are due to the same counterion release mechanism. The
prising role reversal is reflected in force-extension curves
the kind now routinely measured for long biopolymers. F
the case of individual sphere/chain complexes the effec
an external tensionf can be accounted for by adding, in E
~1!, a termfl. At a critical tension equal tol2kBTlP /R2, the
chain–sphere complex dissociates. The measurement o
force-extension curve thus gives information on the adhes
energy per unit length. For the case of a chain under ten
in chemical equilibrium with a solution of spherical macr
ions, however, we find that with increasing tension more a
more spheres condense on the chain and that the critical
sion to add one additional sphere vanishes in the thermo
namic limit of an infinitely long chain. We also consider
chain complexed with a fixed numberN of spherical macro-
ions under an externally imposed strain. Here one might
pect that beads are released with increasing strain in ord
have the remaining beads close to their optimal wrapp
length—resulting in a ‘‘saw-tooth-like’’ force-extensio
curve of the type recently encountered for the tensi
induced denaturation of the linear macromolecule titin.19,20

Again, our finding comes as a surprise: The chain simu
neously unwrapsall the beads in parallel and there is n
sequential release.

In Sec. II we start by reviewing the statistical thermod
namics of complexation of a single sphere with an opposi
charged flexible rod and discuss the mechanism of spont
ous overcharging. Next we treat the complexation and
force-extension behavior of a chain in chemical equilibriu
with a solution of free macroions, and then the complexat
and force-extension curve of a chain with a fixed number
spheres.

II. COMPLEXATION OF A CHAIN AND A SINGLE
SPHERE

Consider the case of a single sphere of radiusR and
chargeeZ and a semiflexible rod with a charge per un
length2e/b, persistence lengthl P , lengthL@R, and radius
r. They are both placed in a salt solution characterized b
Bjerrum lengthl B[e2/ekBT, with e the dielectric constan
of the solvent; and a Debye screening lengthk21

5(8pcsl B)21/2, with cs the bulk concentration of salt. W
will assume salt concentrations such thatk21 is large com-
pared to the sphere radius,kR!1, but small compared toL.
The persistence length is assumed large compared withR, in
contrast to the case of complexation of highly flexible cha
with spheres (R@ l B) studied by Pincuset al.21 and recently
by Nguyen and Shklovskii.22

We restrict our study to highly charged chains where
distanceb between charges on the chain is much smaller t
the Bjerrum lengthl B , i.e., where the so-called Mannin
Downloaded 12 Nov 2002 to 194.95.63.241. Redistribution subject to A
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parameterj[ l B /b is much larger than one. According t
Manning23,24 (12j21)L/b counterions condense on such
chain reducing the effective charge density to 1/l B . The en-
tropic ‘‘confinement’’ cost isVkBT per condensed counter
ion with V52 ln(4jk21/r).25,26 The total entropic electro-
static charging free energy of the chain in this case (j@1) is
then given byVkBT times the number of confined counter
ons:

Fchain~L !>
kBT

b
VL. ~2!

In Eq. ~2! we replaced for simplicity the number of con
densed ions, (12j21)L/b, by L/b, which is an excellent
approximation forj@1 as assumed throughout this pap
On the other hand, the electrostatic charging free energy
spherical macroion of chargeZ is

Fsphere~Z!>H e2Z2

2«R
for uZu,Zmax

uZukBTṼ~Z! for uZu@Zmax

, ~3!

where Ṽ(Z)52 ln(uZulBk21/R2) ~cf. Ref. 23! and Zmax

'R/lB . For weakly charged spheres,uZu,Zmax,Fsphereis the
electrostatic charging energy, Eq.~3! uZu,Zmax. In the case
of highly charged spheres withuZu@Zmax most of the coun-
terions are localized close to the sphere with an entropic
Ṽ(Z)kBT per counterion leading to Eq.~3! for uZu@Zmax. In
that case only a small fractionZmax/Z of counterions is still
free. Zmax—which is also the effective charge of th
sphere—follows the balance of electrostatic charging ene
l BZmax

2 /2R and entropyṼ(Z)Zmax, and is therefore of the
orderṼR/ l B .27

We will determine the total free energy of the chai
sphere complex as follows. Assume that a lengthl of the
chain has been wrapped around the sphere. We divide
sphere/chain complex in two parts: the sphere with
wrapped part of the chain—of lengthl—and the remaining
chain of the lengthL2 l . The first part, which we will refer
to as the ‘‘complex’’~‘‘compl’’ !, has a total charge.

Z~ l !5Z2 l /b. ~4!

We estimate the electrostatic free energyFcompl( l ) of the
complex byFsphere(Z( l )). Equations~3! and ~4! then imply
that Fcompl varies quadratically as (Z2 l /b)2 for uZ( l )u
,Zmax whereas it will be approximately linear foruZ( l )u
.Zmax. Note that this procedure neglects higher-order m
tipole contributions that may play a role for smallZ( l ). Note
also that there is a special lengthl iso5bZ such thatZ( l iso)
50. Simply invoking the principle of charge neutralit
would lead one to expect that the total free energy is m
mized for l > l iso.

The total free energy is

F~ l !5Fcompl~ l !1Fchain~L2 l !1Fcompl-chain~ l !

1Felastic~ l !. ~5!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The first two terms have already been discussed in Eqs.~2!–
~4!. The third term is the electrostatic free energy of t
interaction between the complex and the remainder of
chain. This is of the order:

Fcompl-chain~ l !>Z* ~ l !ln~kR!, ~6!

whereZ* ( l ) is theeffectivecharge of the complex. For sma
complex charges withZ( l ),Zmax the effective charge obey
Z* ( l )5Z( l ); in the opposite case,Z( l ).Zmax, one has
Z* ( l )5Zmax, thereby makingFcompl-chain independent ofl.
The final term in Eq.~5!—the elastic free energy—was a
ready discussed in Sec. I:

Felastic~ l !>S kBTlp

R2 1 f D l . ~7!

We will consider separately the two casesuZ( l )u,Zmax

and uZ( l )u.Zmax.
28 For the first case we find from Eq.~5!

~for f 50!

F~ l !

kBT
>

l B

2R S Z2
l

bD 2

1Al/b1const, l min, l , l max,

~8!

where all contributions linear in the wrapping length~bend-
ing energy, electrostatic interaction between the complex
the ‘‘free’’ chain and counterion release of the counterions
the chain! are combined in the quantityA with

A5
l pb

R2 2 ln~kR!2V. ~9!

The validity limits l min and l max of Eq. ~8! are found by
equatingZ( l ) with 6Zmax:lmin 5l iso2bZmax and l max5l iso

1bZmax. For the second case,uZ( l )u.Zmax, it follows from
Eq. ~5! that

F~ l !

kBT
>B7l /b1const ~10!

with

B75
l Pb

R2 2V7Ṽ. ~11!

The minus sign refers to the caseZ( l ).Zmax ~equivalently,
l , l min! when for every segmentb of adsorbed length both
negative counterion of the sphere and a positive counte
of the chain are released, leading to a decrease in the
energy by2(V1Ṽ)kBT. The plus sign refers to the cas
Z( l ),2Z( l . l min) when for every adsorbed segment a po
tive counterion is transferred from the chain to the sph
leading to a changekB(V2Ṽ) of its entropy. The various
cases are illustrated in Fig. 1.

We can use Eqs.~8!–~11! to discuss the onset of com
plexation as a function of chain stiffness~at zero tension!.
For largel P there is no complexation and we have the ca
Z( l ).Zmax with B2.0, implying—see Eq.~10!—that the
free energy is minimized forl 50. As we reducel P ,B2

changes sign marking the onset of complexation. This co
plexation occurs in a discontinuous fashion: AtB250 the
Downloaded 12 Nov 2002 to 194.95.63.241. Redistribution subject to A
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wrapped length ‘‘jumps’’ from l 50 to l 5 l min . Then for
B2,0 one hasl . l min . More specifically, the position of the
free energy minimuml * is given by

l * 5 l iso2AR/j ~12!

according to Eq.~8!. As long asA.0 the complex in under-
charged. Further reduction ofl P leads to~decreasingA and
hence! increasingl * until the complex reaches the isoelectr
point at A50. For smallerl p ,A,0 and, according to Eq
~12!, l * . l iso, i.e., the complex is overcharged. Cons
quently, for a fully flexible chain withl P50, the complex is
always overcharged ifZ@Zmax.

29,30

The various regimes can also be traversed as a func
of the external tensionf. This requires replacingF( l ) by
F( l )1 f l and A by A1 f b/kBT. For f 50 and sufficiently
small l P one hasl 5 l * with l * given by Eq.~12!. The cor-
responding end-to-end distance of the chain is given bS
>L2 l * 12R ~the exact value ofS depends on the location

FIG. 1. Schematic view of the single-sphere/chain complex. The coun
ons of the positive sphere and negative chain are shown explicitly. Depi
are three scenarios: Forl , l min all the counterions of the wrapped part of th
chain are released but there is still a fraction of the counterions of the sp
present. By adding a further short piece of chain to the complex, counter
of the sphere and chain are released~arrows!. At l' l iso there are no negative
counterions left on the complex. The addition of chain is driven exclusiv
by release of counterions of the chain. For wrapping lengths beyondl max

there is no further release of counterions; rather the positive counterion
the chain are just transferred to the complex.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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of the points where the chain enters and exits the compl!.
With increasingf the wrapped chain becomes more and m
unraveled, which leads to an increasing end-to-end dista

S>L2 l * 12R1
bR

kBTj
f . ~13!

When the critical force

f max52
kBT

b
B2 ~14!

is reached the complex becomes unstable and unravels
pletely, i.e., l 50 and S5L. If instead the end-to-end dis
tanceS is imposed the force increases linearly withSand up
to the point S5L2 l min where a plateau withf 5 f max is
reached, cf. Fig. 2.

If we identify l5(V1Ṽ)kBT/b with the adhesion en
ergy per unit length arising from counterion release, then
~14! reproduces the result by Marky and Manning.14 The
force extension curve is here, however, more complex t
assumed in that study. Also it is important to note that
unwrapping does not necessarily imply a complete disso
tion of the complex. Rather, the chain can touch the spher
one point ~see Netz and Joanny31! or—if it is sufficiently
long compared to its persistence length—it can form ma
leaf ‘‘rosette’’ structures.32 If, for instance, the loops have
diameter of the order of the persistence length then the b
ing energy per loop is of the orderkBT. On the other hand
the gain of adsorption energy per contact follows from co
terion release and leads usually to a gain of a fewkBT.

III. COMPLEXATION OF A CHAIN WITH MULTIPLE
SPHERES

A. Chemical equilibrium

We now turn to the central subject of the paper: t
complexation of a chain in a solution of spherical macroio

FIG. 2. Force-extension curve of the single-sphere/chain complex. The
ear increase off with S is due to the charging contribution of the spher
Further unwrapping leads to the transfer of counterions from the solutio
the chain and to the sphere—resulting in a plateau in the stress–strain
file. At S5L the inextensibility of the chain leads to a sharp increase in
force.
Downloaded 12 Nov 2002 to 194.95.63.241. Redistribution subject to A
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We represent the solution as a reservoir with a concentra
cm of uncomplexed macroions. The sphere chemical pot
tial in solution is the sum of the usual ideal solution term a
the electrostatic free energy of a spherical macroion withZ
@Zmax:

msphere

kBT
5 ln~cmR3!1ZṼ. ~15!

The concentration of the macroions is assumed to be so l
that the ideal solution term can be neglected,
msphere/kBT>ZṼ. We will determine the number of sphere
that have complexed with the chain by requiring this chem
cal potential to equal that of the complexed spheres. We
sume a beads-on-a-string configuration, with a mean spa
D between spheres. The Euclidian distance between the
ginning and the end of the chain will be denoted byS. Then
N5S/D is the number of complexed spheres. The total ch
length L is kept fixed. If l denotes the wrapping length pe
sphere, thenS andL are related by

L>Nl1S22NR. ~16!

The Gibbs free energy is now

G~N,l !5NF~ l !1F int~N,l !2 f S~N,l !2msphereN ~17!

with F int the interaction between the complexed spheres.
a sphere–sphere spacingD(N,l )5S(N,l )/N small com-
pared tok21 but larger than 2R, the repulsion is electrostati
and given by~approximately, forS@k21!

F int~N,l !>LkBT
NlBZ2~ l !

D~N,l !
~18!

for uZ( l )u,Zmax. Equation~18! follows from summing over
the electrostatic repulsion between all complexes on
beads-on-a-string configuration. The quantityL is a logarith-
mic factor of the order ln(k21/D). Finally, for D,2R adja-
cent spheres interact via a strong excluded volume inte
tion.

We now must minimizeG(N,l ) with respect to bothN
and l. We always will assume that the parameterB2.0 so
that for the single sphere case the wrapping length isl *
given by Eq.~12!. Let us first assume thatN is so low that
D@k21. In that case,l > l * . We can lowerG(N,l ) by in-
creasingN. Even when 2R,D,k21 it is energetically fa-
vorable to keep adding spheres to the chain because
chemical potential term2msphereN is larger than the first
three terms ofG(N,l ). Complexation continues untilD
'2R and the hard-core repulsion term terminates compl
ation. SinceD5S(N,l )/N, it follows from Eq.~16! that the
number of spheresN depends on the wrapping lengthL as

N>L/ l . ~19!

This argument holds for anyl min,l,lmax. Using Eq.~19!,
the Gibbs free energy, Eq.~17!, depends only onN, the total
number of complexed spheres:

n-
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e
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G~N,L/N!

kBT
5

G~N!

kBT
>NH ~L11!

l B

2Rb2 ~ l iso2L/N!2

2
2R f

kBT
2

msphere

kBT J 1const. ~20!

The constant term is not dependent onN.
Clearly, the first term of Eq.~20! ~representing the charg

ing energy of the individual complexes plus the electrosta
interaction of the complexes! favors the isoelectric configu
ration L/N5 l iso. However, because of the second and th
terms ~representing an external tensionf and the release o
counterions of the spheres upon adsorption!, we can lower
the free energy further by increasingN beyondL/ l iso. This is
not a small effect sincemsphere/kBT is of the orderZ@Zmax

while the first term of Eq.~20!, the capacitive energy, is o
the order (l B /R)Zmax

2 'Zmax ~sinceZmax'R/lB!. The spheres
in the many-sphere complex are thus undercharged. Ph
cally, we can illustrate this effect by first settingL/N5 l iso.
In that case the complex is isoelectric. Now add one m
sphere. By equally redistributing the chain between theN
11 spheres, one has a individual wrapping lengthl 5L/(N
11) close to the isoelectric one. Therefore the previou
condensed counterions of the added sphere are release
increase their entropy. By adding more and more sphere
while reducing l 5L/N—we can liberate more and mor
counterions.

Minimizing Eq. ~20! we find thatG(N) has a minimum
in the regimel min,l,lmax given by

L/N> l isoS 12
Ṽ12R f/ZkBT

L11

R/ l B

Z
D , ~21!

where we use the fact thatZ@Zmax}R/lB . This means that
L/N is not much less thanl iso, so we do remain close to th
isoelectric point.

Using Eq.~21! we can now compute the force require
to increasethe numberN of spheres by one, starting from
f 50:

f ~N→N11!>~L11!
ZkBT

2R S Z2

R/ l B
D b

L
. ~22!

Note that from the work of Sec. II, the application of a for
would be expected to reduce the number of sphere–c
complexes whereas under the present condition of
chemical equilibrium force application now, paradoxical
increases the number of complexes. Note that in the ther
dynamic limit of largeL, the critical tension vanishes as 1/L.

B. ‘‘Fixed’’ N

We assumed in the previous section that the sphere
solution are in chemical equilibrium with the chain. In pa
ticular, the rate of spheres ‘‘evaporating’’ from the compl
must equal the rate of spheres ‘‘condensing’’ onto the co
plex. If, in a force extension experiment, we ramp the fo
such that it is not possible to maintain chemical equilibriu
we would be in a fixedN ensemble. We ask: What is th
optimal number of condensed beads for a given extern
imposed strain? Naively, one might expect that the num
Downloaded 12 Nov 2002 to 194.95.63.241. Redistribution subject to A
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of beads always is chosen such that each complex is clos
its isoelectric wrapping lengthl iso. With increasing end-to-
end distance the lengthL –S available for wrapping de-
creases and thus the necklace would have to release sp
in order to have the remaining complexed spheres clos
the isoelectric point. A consequence of this mechani
would be a sawtooth pattern in the measured force-exten
curve.

Let us first consider the chain with allN spheres com-
plexed. The free energy follows directly from Eq.~17!:

F~N,l !5NF~ l !1F int~N,l !. ~23!

We assume in the following the case of equally spaced
well-separated beads for whichL/N greatly exceedsl iso and
R. In the force-free case,f 50, we find from Eq.~23! the
following optimal wrapping length:

l * > l iso2A
R

j S 12
2LRN

L D . ~24!

Comparing this result with the single-sphere case, Eq.~12!, it
can be seen that the extent of over- or undercharging is
duced. By this means the electrostatic repulsion between
complexes is lowered.

We compute now the behavior of theN-bead-on-a-string
configuration under an imposed end-to-end distanceS. We
assume that the wrapping length is the same for each c
plex, i.e., it is given by l (N,S)>(L2S12NR)/N>(L
2S)/N. There are two cases.~i! For small values of the
wrapping length withl (N,S), l min @and thusZ( l ).Zmax#
there are condensed counterions on the spheres.F1 is then
given by Eq.~10! andF(N,S) is linear in l ~andS!:

F~N,S!

kBT
>B2

l

b
N2NṼZmax1N

l BZmax
2

2R
1

L l B

L
Zmax

2 N2

1 ln~kR!NZmax ~25!

with l 5 l (N,S). In Eq. ~25! we explicitly wrote down the
l-independent terms that account for the electrostatics of
necklace forl→0 whereZ( l )5Zmax. ~ii ! For larger wrap-
ping lengths withl min,l,lmax, all the counterions of the
spheres are released. In that caseF1 is given by Eq.~8! and
the total free energy of the necklace is quadratic inl ~andS!:

F~N,S!

kBT
>

l BN

2R
Z2~ l !1A

l

b
N2NṼZ

1L
N2l BZ2~ l !

L2N~ l 22R!
1 ln~kR!NZ~ l !. ~26!

Note that atl 5 l min5l iso2bZmax ~i.e., at S5L2 l minN! the
two free energies have the same value as well as the s
derivative with respect toS. Here Zmax is of the order
R/ l B(Ṽ2 ln(kR))(122LRN/L).

We now ask if it is favorable for the necklace to hold o
to all its spheres or if—for a given value ofS—the necklace
can lower its free energy by releasing some of its sphe
Assume a complex withN2m complexed spheres andm
free ones. In this case the individual wrapping length is giv
by l (N2m,S)>(L2S)/(N2m). The free energy in this
case is given by
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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F̃~m,N,S!>F~N2m,S!2mṼZmax1mlBZmax
2 /2R. ~27!

HereF(N2m,S) is given by Eq.~25! for l (N2m,S), l min

and by Eq.~26! for l (N2m,S). l min . The last two terms in
Eq. ~27! describe the free energy of them free spheres.

Let us first consider the case of high ionic strength wh
the electrostatic interaction between complexes can be
glected, i.e., the caseL50. Then the expression for wrap
ping lengthl * , Eq. ~24!, reduces to the single sphere ca
Eq. ~12! ~for f 50!. The end-to-end distance of this neckla
is given byS* >L2N( l * 22R).

We now compare the free energies of necklaces w
different numbers of beads for a given externally impos
end-to-end distanceS.S* . For simplicity, let us first
‘‘switch off’’ the sphere–chain interaction, i.e., set formal
ln(kR)50. In this caseF̃(m,N,S) is independent ofm as
long as the individual wrapping length fulfillsl (N2m,S)
, l min , i.e., as long as one is in the linear regime, Eq.~25!.
So if we neglect sphere–chain interactions we find that—
a given imposed end-to-end distanceS—all (N2m)-bead
necklaces have thesamefree energy as long asm is suffi-
ciently small, namelym,N2(L2S)/ l min . Furthermore, as
discussed previouslyF̃(m,N,S) crosses over smoothly to th
quadratic regime atl (N2m,S)5 l min , which corresponds to
g
y
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y
ld

in
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ng
rg
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the end-to-end distanceSm>L2(N2m)b(Z2Zmax). The
corresponding free energies are shown in Fig. 3~a!. Evi-
dently, for S,Sm the system withm21 free beads has a
lower free energy than the one withm free beads.

From this analysis it follows that there is noS value
where the release of spheres would lead to a lowering of
free energy—as long as we neglect the electrostatic inte
tions between the constituents of the complex. It is now e
to show that one breaks the degeneracy previously discu
by accounting for the sphere–chain interactions. The rele
of beads is not favorable since one has to overcome
bead–chain attraction ln(kR)Zmax per released sphere. Th
picture will also not change if we include the sphere–sph
interaction term since it is of the orderRN/L smaller and is
thus only a small correction. Therefore the chain alwa
holds on to all of its spheres. The corresponding free ener
as a function of the externally imposed end-to-end distancS
are depicted in Fig. 3~b!.

Consider now theN-bead necklace that has an unpe
turbed lengthS* >L2N( l * 22R) with l * being the optimal
wrapping length per bead, Eq.~24!. If we increaseS we
encounter the following restoring forcef 5]F(N,S)/]S5

2N21]F/] l :
f >H jkBT

RbN
~S2L1N~ l * 12R!!for L2N~ l * 22R!<S,L2N~ l min12R!

2
kBT

b
B2 for L2N~ l min22R!<S,L.
ous
ol-
re-

fer-
ng
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en-
ter-
t one
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For N51 we recover Eqs.~13! and~14!. In the linear regime
the slope of the restoring force decreases with increasinN.
Hence the force that is required to stretch the chain b
given amountDS vanishes in the thermodynamic limitN
→` andL→` with L/N fixed.

Concluding, we find that the ‘‘fixed’’N case does no
lead to release of spheres and sawtooth-like patterns. Th
different from a large variety of systems where one ha
stepwise unfolding of a chainlike structure under stretch
and a sawtooth pattern in the force profile. Experimentall
was observed for the muscle protein titin where the unfo
ing of domains is responsible for this behavior.19,20 Other
promising candidates are polymers that self-assemble
chains of subunits connected by strings. Polysoaps f
strings of micelles.33 Polyelectrolytes ~PEs! in poor
solvent,34 as well as polyampholytes35,36~polymers that carry
positive and negative charges!, assume necklace-type con
figurations~globules connected by strings!. The stepwise un-
folding was studied in detail for PEs in a poor solvent37,38

where a sawtooth pattern in the force profile is predict
Each step corresponds to the disintegration of a globule
the redistribution of its material between the remaini
beads. In this way the necklace can lower its surface ene
Important in these systems is that the subunits have a p
a

is
a
g
it
-

to
m

.
nd

y.
f-

erential size: If they can aggregate to one large homogene
globule, as is the case for a neutral polymer in a poor s
vent, one finds just one plateau in the force profile cor
sponding to the unwinding of the globule.39

The chain necklace discussed in this paper has a pre
ential wrapping length close to the isoelectric wrappi
length l iso, which minimizes the charging energy. Th
mechanism that prevents stepwise unfolding is the free
ergy loss by releasing a sphere. The contribution of coun
ion condensation on the sphere is already so large so tha
finds the degenerate case depicted in Fig. 3~a!. The electro-
static sphere–chain interaction leads to a further shift of
free energies leading to the case depicted in Fig. 3~b!. Only if
we assume an additional large negative contribution to
chemical potential of the spheres, Eq.~15!, is it possible to
achieve a situation at which the curves intersect, as depi
in Fig. 3~c!. In this case one has a sequential release of
spheres and a sawtooth pattern in the force-extension pro

Therefore it cannot be expected that the charging con
bution would induce a stepwise unfolding of a beads-on
string complex like the chromatin fiber. The sequential
lease of histone octamers would be too costly due
counterion condensation effects. It is also important to n
that for physiological salt concentrations~100 nM! the charg-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ing contributions are effectively negligible due to screen
effects (k21'10 Å). However, other factors might be im
portant. For instance, inhomogeneities of the bending pr
erties of DNA due to its base pair sequence lead to differ
binding energies of the histone octamers. This might lea
their sequential release. A recent microrheological stretch
experiment40 on single chromatin fibers shows indeed a no
reversible increase of the fiber length when the fiber
stretched up to a point where the restoring force is of
order of 20 pN. Subsequent stretch–release cycles find
further nonreversible increase in the stretching length
higher and higher forces~up to '50 pN!. It is assumed tha
the irreversible increase in fiber length is due to the loss
histone octamers; the increase in the critical force from cy
to cycle might indicate variations in the binding energy p
histone.

IV. CONCLUSION

The analytical study presented here shows that a sys
of polyelectrolytes and oppositely charged spheres can f
under- or overcharged complexes depending on the c
flexibility, the concentration of spheres, etc. For the case
single sphere–chain complex we find overcharging for a s
ficiently flexible chain—in accordance with a recent study10

FIG. 3. Free energies of necklaces with different numbers of beads
function of the imposed end-to-end distance. Case~a! depicts a special case
where necklaces with different numbers of beads are degenerate. As
cussed in the text this is found when only the contribution of the counter
is taken into account.~b! The attraction between the spheres and the ch
breaks this degeneracy. The chain holds always onto all its spheres.~c! For
a large negative contribution to the chemical potential of the spheres~for
instance, for a very low density of spheres! the curves intersect and th
stretching leads to a sequential release of spheres. In this case one h
occurrence of a saw-tooth pattern in the force-extension profile.
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With increasing chain stiffness~or increasing externally im-
posed tension! the wrapping length decreases and so the
gree of overcharging. By this means it is even possible
have an undercharged complex—up to a critical stiffness~or
tension! where an abrupt complete unwrapping of the ch
occurs. The structures beyond this unwrapping transition
open multileafed ‘‘rosettes’’ that were considered in a pr
study.32

On the other hand, if the chain is placed in a soluti
with a finite concentration of spheres the resulting comp
is a chain completely ‘‘decorated’’ with spheres, each
which is undercharged. This is the case even for highly fl
ible chains. This profound difference between single-sph
complexes and multisphere complexes is also reflected in
response of such a structure to an externally imposed
sion. The single-sphere complex will unwrap gradually a
then unwrap abruptly when a tension of the orderkBT per
monomer lengthb is reached. On the other hand, for mul
sphere complexes applying a tension leads to the surpri
effect of the complexation of more and more spheres.

We also considered chains complexed with a ‘‘fixe
numberN of spheres that show a very soft stretching mod
lus proportional toN21. Interestingly, the chain holds on t
all its spheres up to the point when the critical tension
unwrapping is reached where all spheres unwrap simu
neously.

There is a large amount of work on the problem of co
plexation of a chain with a single sphere, including theor
ical studies10,14,22,31,32,41–45and computer simulations.22,46–48

It is important to note that most of these studies find
phenomenon of overcharging, even though all but one10 do
not consider counterion condensation, i.e., these studies
restricted to weakly charged systems. Nguyen and Shklov
showed in a recent study22 that the overcharging of thes
complexes is driven by a correlation effect. For perfec
flexible chains as considered in their study the chain win
around the sphere so that neighboring turns lie parallel
distanceD of the orderR2/ l . The interaction of the chain
with itself beyondD is effectively screened leading to a d
crease of the self-energy of the polyelectrolyte upon adso
tion. This argument has to be somewhat modified for se
flexible chains where the resulting path of the wrapped ch
is more complicated and—at least for short wrappi
lengths—resembles a tennisball seam pattern~cf., for in-
stance, Ref. 45!.

The above-mentioned correlation effect can be
glected, i.e., the charges of the adsorbed chain can be sim
‘‘smeared out’’ on the sphere if the wrapping of the cha
around the sphere is sufficiently tight,D'r ; accordingly, for
simplicity, the present study does not consider correlat
effects. In the opposite case, whenD@r , correlation effects
have to be carefully taken into account. At the same time,
counterion release mechanism becomes less important.
was shown by Sens and Joanny13 for the case of the adsorp
tion of a highly charged rod on an oppositely charged pla
surface; the fraction of counterions released from the
upon its adsorption decreases with decreasing surface ch
density of the plane~cf. also Ref. 18!.

There are two recent studies that are also devoted
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multisphere adsorption on a polyelectrolyte. Jonsson
Linse49 performed Monte Carlo simulations of a flexib
chain complexing with oppositely charged spheres, acco
ing explicitly for the counterions of the chain and th
spheres. Their findings show the same qualitative featu
concerning over- and undercharging that are found in
present study. A single sphere is usually overcharged by
complexed part of the chain, whereas in the case of an a
dance of spheres the number of complexed spheres exc
the number that is required to form an isoelectric compl
i.e., each bead is undercharged. An analytical approach to
multisphere complex was given by Nguyen and Shklovsk17

extending their single-sphere theory.22 Again, for their sys-
tem also~flexible polyelectrolytes and spheres with no cou
terion condensation! they find similar features. For a sma
number of complexed spheres each bead is overcharge
the chain~due to the correlation effect! whereas in the oppo
site limit the chain will be undercharged. The authors a
computed the response of their system to an externally
posed strain: For sufficiently strong screening more a
more beads associate with the chain with increasing tens
Interestingly, for the weak screening case it is found t
complexed beads leave the chain one by one under incr
ing tension—reminiscent of the behavior of a polyelectrol
necklace in a poor solvent.37,38
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ing to Ṽ52 ln(ZlB k21/R2). This derivation is consistent with the nonlin
ear Poisson–Boltzmann approach, cf. Ref. 26, forlchain!r andlsph!R.

26I. Rouzina and V. A. Bloomfield, J. Phys. Chem.100, 4292~1996!.
27S. Alexander, P. M. Chaikin, P. Grant, G. J. Morales, P. Pincus, and

Hone, J. Chem. Phys.80, 5776~1984!.
28Due to the presence of the charged rod the value ofZmax is slightly dif-

ferent from that for an isolated sphere. The electrostatic charging en
includes now the sphere-chain interaction term, Eq.~6!, i.e., l BZmax

2 /2R

1 ln(kR)Zmax leading to aZmax value of the order (Ṽ2 ln(kR))R/lB .
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