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ABSTRACT: Scaling aspects are of common occurrence in polymer science. Here 

we concentrate on the fractal behavior of dynamical systems. As examples we focus 

on the sol-gel transition and on the patterns of motion displayed by polyampholytes 

(polymers containing positive and negative charges). 

 

 

 

1. Introduction 

 

Scaling laws are ubiquitous in polymer science, so that it comes as no surprise that 

fractal concepts find here very fruitful grounds. Many structural aspects are fractal: 

Thus in good solvents, under excluded volume conditions, the average squared end-

to-end distance of a chain is a power-law of the number of monomers [1], fact which 

translates into a fractal relation [2]. Less emphasized is the fact that also dynamical 

processes in polymers show fractal behavior. A basic example is photoconductivity, 

in which charge carriers undergo dispersive transport, often such that the diffusion 

coefficient displays an algebraic dependence on time [3]. As pointed out by 

Mandelbrot (cf. p. 417ff of Ref. [2]) scaling decays, i.e. hyperbolic relaxation patterns 
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€ 

Φ t( )∝ t −γ  (1) 

with  are commonly found in physical systems as a response to external 

perturbations. As further typical processes which obey Eq. (1) we mention the stress 

relaxation in viscoelastic materials [4], expecially in critical gels [5], the dielectric 

relaxation in liquids [6] and the current behavior at rough electrode-electrolyte 

interfaces [7]. 

Mimicking the decay law, Eq. (1), through a superposition of exponentials, e.g. 

€ 

Φ t( ) = ρ τ( )exp − t τ( )
0

∞

∫ dτ , (2) 

(where 

€ 

ρ τ( )  gives the distribution of relaxation times) is conceptually not satisfactory 

[2]. On the other hand, one expects that the exponent γ mirrors in some way the 

properties of the underlying medium. There are a series of approaches which relate 

the exponent γ to dynamical aspects, such as the continuous-time random walk 

(CTRW), where γ appears in the waiting-time distribution [8] or, in a more subtle 

connection, expressions involving fractional calculus [9]. In a series of works [10-12] 

we have shown how fractional derivatives may be related in a straightforward way to 

an underlying hierarchical structure. In Ref. [12] we have used such hierarchical 

models (ladder-like and fractal spring-dashpot arrangements) in order to describe the 

dynamics observed during gelation. 

 

 

1. Ladder and Fractal Arrangements 

 

In this section we introduce mechanical networks which mimic the viscoelastic and 

the structural properties at the sol-gel transition. Crosslinking polymers at the gel 

point show in general a power law behavior of the complex modulus 

 (3) 
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with  over many decades in frequency. Relation (3) implies for the relaxation 

modulus 

€ 

G t( ) , given by 

€ 

G*(ω) = iω G(τ )exp(−iωτ )dτ
0

∞

∫ , an algebraic decay, Eq. 

(1). 

 

 

 

Fig. 1 Ladder arrangement used to model scaling decays. 

 

In Fig. 1 we display mechanical arrangements which lead to algebraic relaxation 

forms. The models consist of ladder-like structures with springs (having spring 

constants ) along one of the struts and dashpots (with viscosities 

) on the rungs of the ladder. Here we examine three different forms of 

ladder models: (a) a finite ladder structure, obtained by replacing in Fig. 1 the box B 

by a spring  and a dashpot  in series (a so-called Maxwell element ), (b) 

an infinite arrangement, in which case the box B in Fig. 1 represents a non-

terminating ladder and (c) a finite ladder structure, obtained by using a spring as the 

final rung (here the box B consists simply in a spring ). 
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As in Ref. [10] we obtain for the complex modulus 

€ 

G* ω( )  continued fraction 

expressions. The complex modulus of the infinite ladder, case (b), fulfils 

 (4) 

whereas the finite arrangement (a) leads to the terminating continued fraction 

 (5) 

and case (c) to the expression: 

 (6) 

Choosing in Eq. (4)  and  it can be shown (by 

comparing terminating approximations of the continued fraction with the binomial 

series) that the complex modulus of the infinite arrangement is given by 

 (7) 

where we set . For  Eq. (7) reduces to the form . 

Therefore having the same spring constants and viscosities for the whole arrangement 

one gets a complex modulus with . The short time behavior (i.e. ) is 

dominated by the first spring of the ladder and models a solid-like, glassy behavior 

with  and . Of interest are furthermore the long-time 

dynamics ( ) for the finite arrangements (cases (a) and (c)). In case (a) one 

obtains from Eq. (5) a fluid-like behavior whose steady-flow viscosity is 

€ 

η f = n +1( )η

. In case (c), Eq. (6), one finds that the equilibrium modulus 

€ 

G∞ = n +1( )−1E  does not 

vanish, i.e. the system behaves like a solid. Case (a) is hence typical for a pregel and 

case (c) for a postgel [12]. 

To obtain other values for γ, a suitable distribution for the spring constants and 

viscosities has to be chosen (for instance an algebraic k-dependence with 
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 [10]). Such an arbitrary choice of the material constants is, however, 

reminiscent of the "distributed times panacea" [2]. 

 

 

 

Fig. 2 Section of the infinite mechanical network based on the Sierpinski gasket. 

 

We prefer to proceed by showing that other γ-values arise from fractal arrangements. 

The construction starts by connecting each site  of a given fractal network to 

neighboring nodes  by equal springs with spring constant E and linking each  to 

the ground via a site-dependent dashpot with viscosity 

€ 

ηi = z ri( )η  (where 

€ 

z ri( )  is the 

coordination number of node ). Furthermore, the nodes' motion is perpendicular to 

the ground. To give an example we show in Fig. 2 a section of the infinite mechanical 

network constructed from the Sierpinski gasket [2]. The analogy to random walks can 

now be seen by comparing the stresses acting on node  (whose displacement is ) 

€ 

ηi ˙ ε i t( ) = E ε j t( ) −ε i t( )[ ]
j i( )
∑  (8) 

with the master equation 
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€ 

d P ri,t( )
dt

= wijP r j ,t( ) − w jiP ri,t( )[ ]
j i( )
∑  (9) 

which governs the probability 

€ 

P ri,t( ) of having a random walker at site . In Eqs. (8) 

and (9) the sums run over all nearest neighbours  of . The transition probabilities 

 in Eq. (9) obey 

€ 

z r j( )wij = w = constant . One can now identify formally 

€ 

ηiε i t( ) 

with 

€ 

P ri,t( ). Furthermore, the probability for a random walker to return to the origin 

at time t follows an algebraic form: 

€ 

P t( )∝ t −ds 2  (10) 

where  is the spectral dimension of the network. It follows [12] a power law 

behavior of the complex modulus, Eq. (3), with . The ladder model, Fig. 1, 

is the special case of a one-dimensional lattice with  and thus ; the 

Sierpinski gasket in 2d has 

€ 

ds = 2ln 3( ) ln 5( )  and hence 

€ 

γ =1− ln 3( ) ln 5( ) ≅ 0.317 . 

Now, ladder and fractal arrangements allow to display how the mechanical properties 

of crosslinked systems depend on their stage of gelation [12]. First, the relation 

 connects the dynamics with the topological properties of the fractal. 

Second, the fluid- or solid-like behaviors encountered in pre- or postgels, respectively 

are related to the cut-off parameters of the self-similar structure. The experimental 

findings indicate that γ changes during the sol-gel transition [5] fact directly related to 

the geometrical changes in the underlying chemical network during gelation. 

 

 

3. Dynamics of Polyampholytes (PA) 

 

In this section we present our results on the behavior of PAs in external electrical 

fields [13]. We follow the lines of Ref. [13] and view the PA as consisting of N 

charged beads, connected into a linear chain by harmonic springs. The chain's 

position is given by the set 

€ 

Rn t( ){ } , where 

€ 

Rn t( ) = Xn t( ),Yn t( ),Zn t( )( ) is the position 
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vector of the nth bead ( ) at time t. We denote the charge of the nth 

bead by  and take it to be a quenched random variable. The potential energy is then: 

€ 

U Rn t( ){ }( ) =
K
2

Rn t( ) −Rn−1 t( )[ ]2
n=1

N −1

∑ − E qnRn t( )
n=0

N −1

∑ . 
(11) 

In Eq. (11) E denotes the electrical field and  the spring constant; T is the 

temperature in units of the Boltzmann constant  and b is the mean distance between 

beads (in the absence of an external field). The electrical field points along the Y-axis, 

so that 

€ 

E = 0,E,0( )  holds. Eq. (11) turns into the Rouse model when excluded volume 

effects and hydrodynamic interactions are disregarded; then the chain's dynamics is 

described by N coupled Langevin equations [14-16] 

€ 

ζ
dRn t( )
dt

= −
∂U Rn t( ){ }( )
∂Rn t( )

+ fR n,t( ) . (12) 

In Eq. (12) ζ is the friction constant and 

€ 

fR n,t( )  are Gaussian random forces with 

€ 

fi n,t( ) = 0 and 

€ 

fi n,t( ) f j ʹ′ n , ʹ′ t ( ) = 2ζTδ ij δn ʹ′ n δ t − ʹ′ t ( ). Here i and j denote the 

components of the force vector, i.e.  and the dash stands for the thermal 

averages, i.e. averages over realizations of the Langevin forces 

€ 

fR n,t( ) . 

One obtains now readily [13] the explicit time dependence of the mean squared 

displacement (MSD) of the chain's center of mass (CM), the average squared end-to-

end distance and the MSD of a tagged bead. Thus the following result for the MSD of 

the CM in the Y-direction holds: 

€ 

YCM t( ) −YCM 0( )( )2
=

2T
ζN

t +
E 2

ζ2 ˜ q 0
2 t 2 . (13) 

In Eq. (13) the brackets denote averages with respect to the realizations of  and use 

was made of the properties of 

€ 

fi n,t( ); furthermore  is the pair correlation 

function of the charge variable, and 

€ 

˜ q p = N −1 dncos pπn N( )qn0

N
∫  the Fourier 

transform of the . 

Furthermore, the Y-component of the end-to-end vector 

€ 

P t( ) =R0 t( ) −RN t( )  obeys: 
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€ 

PY
2 t( ) =

b2N
3

+
16 E 2

ζ2 ˜ q p ˜ q q dτ1
0

t

∫ dτ 2
0

t

∫ exp −p2τ1 τR −q2τ 2 τR( )
q

∧

∑
p

∧

∑ . (14) 

Here  is the Rouse-time and the hat designates that the sum extends 

over odd, positive numbers only. 

Depending on the distributions of the charge variables  a multitude of scaling laws 

follows [13]. As an example, consider the dynamics of a tagged bead, say one of the 

chain's end; its motion obeys a closed-form expression, which in full generality is 

rather complex [13]. Exemplarily, we show here the expression for the special case in 

which only the first bead of the PA is charged: 

€ 

Y0 t( ) =
qE
ζN

t+ 2qE
ζN

dτ
0

t

∫ exp −p2τ τR( )
p=1

∞

∑ . (15) 

For  it follows 

€ 

Y0 t( ) =
qE
ζN

t +
2
π

qE
ζK

t1 2 , (16) 

For long chains , so that 

€ 

Y 0 t( )∝ t1 2  holds for a very long time. Evidently 

this is the PA's response to a field 

€ 

E t( ) = EΘ t( ) , where Θ is the Heaviside step 

function. Then the position of the charged bead in the presence of an arbitrary 

external field 

€ 

E t( ) (with 

€ 

E t( ) = 0 for ) is well approximated by the following 

convolution integral 

€ 

Y0 t( ) =
q
ζK

1
Γ α( )

dτ t −τ( )α−1 dE τ( )
dτ0

t

∫ =
q
ζK

d−α

dt −α
dE t( )
dt

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (17) 

with . The convolution integral of Eq. (17) is a Riemann-Liouville integral 

which for any  defines the fractional integral, symbolized by the operator 

 [9]. Now fractional derivatives  (for ) are obtained by applying 

ordinary derivatives to fractional integrals. Using the composition rule (see Ref. [9] 

for details) the following fractional differential equation follows: 

€ 

qE t( ) = ζK d1 2Y0 t( )
dt1 2

. (18) 

This is a fractional relation which is very akin to the stress-strain expression 
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€ 

σ t( ) =ηγE1−γ d
γε t( )
dtγ

 (19) 

for which, in the ladder model,  [10, 12]. The use of expressions such as Eq. 

(19) is of growing interest in the theory of viscoelasticity [4, 17, 18]. Now, is the 

similarity between Eqs. (18) and (19) accidental? No, the physical situation of the 

Rouse chain is, in fact similar to that of the ladder arrangement, Fig. 1. By performing 

the average over the Langevin forces in Eq. (15), we have 

€ 

Xn t( ) = Zn t( ) = 0; this 

corresponds to a projection of the beads' average positions on the Y-axis (cf. Fig. 3). 

Furthermore these objects (due to the assumptions of the Rouse model) are connected 

by springs and are exposed to a velocity dependent friction, just as the elements of the 

ladder model. Mathematically the ladder model and the Rouse chain (and therefore 

Eq. (18) and Eq. (19) with ) are equivalent if one identifies the stress σ with 

the electrical force  and the deformation ε with the thermal average of the charge's 

position, . 

 

4. Conclusion 

 

In this work we have investigated relaxation processes on underlying self-similar 

structures. As a prototype we examined sequential ladder arrangements which lead to 

scaling decays with . Furthermore, we have discussed fractal networks, where 

the relaxation exponent γ mirrors the connectivity of the lattice. As shown, these 

models can be applied to a broad range of physical systems, such as to critical gels 

and to polymers in electrical fields. 
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Fig. 3 Behavior of a Rouse chain under different realizations of the Langevin forces. 

The chain has one charged bead at  and is placed in a constant electrical field 

€ 

E = 0,E,0( ) . The averaging (depicted on the right-side) is equivalent to a projection 

on the Y-axis, see text for details. 
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