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Abstract – We investigate the combined effect of torque and force on a nucleosome, the most
abundant DNA-protein complex in eukaryotic cells. Using the worm-like chain model (WLC) we
show how low positive torques ease the unwrapping of the DNA from the nucleosome. Remarkably
a combination of high forces and high negative torques favors DNA unwrapping as well. The theory
is also applicable beyond nucleosomes, namely whenever DNA spools are involved.
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Introduction. – In every cell of our organism there
is enough DNA that, if stretched, would be longer than
most of us. Even more remarkably, some ten thousand
cells, stacked one over the other, are needed to be as long.
Nature had thus to find a clever way to compact the DNA,
a negatively charged, semi-flexible polymer, into every
cell.
To accomplish such a high degree of compaction, DNA

molecules are wrapped into nucleosomes. In each nucle-
osome DNA is wrapped ≈ 1.7 turns along a left-handed
superhelical wrapping path of 4.3 nm radius around an
octamer of histone proteins. In this configuration, with
highly bent DNA, equilibrium is reached through 14 bind-
ing sites at the nucleosome surface providing electrosta-
tic attraction and hydrogen bonding. The resulting string
of nucleosomes with short pieces of bare linker DNA in
between condenses further, presumably into chromatin
fibers [1,2], finally packing into a whole chromosome.
To allow replication and transcription the DNA mole-

cule needs to unbind —at least locally— from the octamer.
To learn about the nucleosomal stability and energetics,
experiments have been designed to pull on its DNA with
various tensions [3,4] and the findings have been analyzed
using theoretical models [5–7]. Here we choose a differ-
ent route by exploring the response of a nucleosome to
a combination of tension and torque. We note that, with
the due modifications, this theory can also be applied to
other DNA spools widely found in Nature, like the Lac1
repressor [8], DNA gyrase [9] and RNA polymerase [10].
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General model. – We consider a nucleosome, with
DNA legs at its ends, under tension f and torque,
see fig. 1. In our model the DNA is described as a
worm-like chain being wrapped around a cylinder that
represents the histone octamer. The wrapped section of
the DNA molecule is described by the space curve (n
stands for nucleosome) rn(s) = r(πs tanα, cosπs, sinπs)
with r= 4.3 nm and α=−0.085 and thus a pitch of
2πr tanα. A nucleosome with s∗-turns of DNA adsorbed is
described by rn(s) with s∈ [−s∗, s∗]. To unwrap its DNA
the nucleosome has to rotate around the y−axis by an
angle β (fig. 1) resulting in rn(s,β) =Oy(β)rn(s, 0) with
Oy denoting the corresponding rotation matrix [5] and
rn(s, 0)≡ rn(s).
In the torsionless case the conformation of the free

DNA is planar with its ends aligned with the force
as it has been worked out in detail in [5] using the
Kirchhoff kinetic analogy [11]. Adding torsion causes
the DNA legs to bend out of plane. Since a non-
planar homoclinic loop is only favored when the inserted
number of turns is between −1 and 1, and since most
of the non-planarity is contained within the wrapped
part of the DNA, we simplify our analysis by describ-
ing the legs by the planar homoclinic orbit with the
tangent vector tl(s, δ) =Oz(δ)(0, sin θ(s), cos θ(s)), with
cos θ(s) = 1− 2 sech2(s/λ); here λ=

√
A/f with A being

related to the DNA persistence length lp =A/kBT ≈
50 nm. From −s0 to +s0 we replace this curve with the
wrapped nucleosomal DNA (see fig. 1). The δ-rotation
of the DNA legs ensures continuity at the insertion
point, without affecting the energy. In addition continuity
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Fig. 1: (Colour on-line) The nucleosome under tension and
torque. In our model the histone octamer is represented by
a cylinder. A part of the DNA molecule is wrapped around it
(in an orange hue), the rest forms the legs (in a blue hue).

requires

0= tl(s0, δ)+ ṙn(−s∗,β)

from which follows

s0(s
∗,β) =

λ

t
arcsech

tmin
t

(1)

with

tmin=

√
1+ cosα cosπs∗ cosβ− sinα sinβ

2
(2)

and t= 1. In eq. (1) t represents the homoclinic parameter,
which quantifies how “planar” the legs are. In this work
we assume the legs to be perfectly planar (t= 1). This
approximation is good for several reasons: first of all the
domain of arcsech limits t to [tmin, 1]. When s∗ %≈ 0, 1, 2,
the β that minimizes the energy leads to tmin ≈ 1. On
the other hand, when s∗ ≈ 0, 1, 2, the contribution of the
legs to the energy is almost 0, since s0 is very high (see
eq. (7)). As convention we assume that the point ±s∗ of
the adsorbed DNA is attached to the point ±s0 of its free
counterpart so that the path of the DNA is described by

r(s, s∗,β) =






∫
tl(s, δ1)ds, if s∈ [−Ll(s∗,β),−s0],
∫
tl(s, δ2)ds, if s∈ [+s0,+Ll(s∗,β)],

rn(s,β), if s∈ [−s∗, s∗].
(3)

In the integrals one of the integration boundaries is the
length Ll(s∗,β) = (L+2s0−Ln(s∗))/2, where Ln(s∗) =
2πrs∗secα is the length of the DNA adsorbed by the
nucleosome. The two angles δ1, δ2 are important to ensure
continuity at the boundary between legs and nucleosome,
but they do not influence the energy. Therefore, we drop
the δ argument of tl from now on. Once s∗ and β are
known, the energy of the system can be computed from
tl(s0) and rn(s,β). The resulting structure is depicted in
fig. 1.

Writhe. – The torsional energy of the DNA is propor-
tional to the square of its twist, Tw. The twist is related
to the number of turns externally inserted into the system,
the linking number n, through White’s relation n= Tw+
Wr [12]; the writhe of the curve, Wr, is in principle only
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Fig. 2: (Colour on-line) A comparison between the local writhe,
i.e., using the helix axis in eq. (4), and the writhe for the β
that minimized the energy, βmin. For reference also π+βmin is
plotted.

defined for a closed loop as its Gauss integral with itself.
However, thanks to Fuller’s relation under certain assump-
tions [13], the writhe of the nucleosome is

1

2π

∫ s

0

−ẑ× tn(s,β)
1+ (−ẑ) · tn

· dtn(s,β)
ds

ds, (4)

where tn is the unit tangent vector of the wrapped DNA
path rn. Applying eq. (4) gives

Wri(s,β) =
arctan

(
cos α−β2 csc

α+β
2 tan

πs
2

)

π

−1
2
s sinα−∆(s,α). (5)

This means that the total writhe of a nucleosome with s∗

turns adsorbed is

Wr(s∗,β) =Wri(s∗,β)−Wri(−s∗,β). (6)

The function ∆ eliminates the (finite-size) discontinuities
of the trigonometric function and it is −1 for s∈ [−3,−1],
0 for s∈ [−1, 1] and 1 for s∈ [1, 3] etc. The legs should also,
in principle, be counted in the integral in eq. (4); however,
since they are in a plane “parallel” to the ẑ-axis, their net
contribution to the writhe is 0. Note that eq. (6) deviates
from the intuitive writhe of the helix, i.e., −s∗(1+ sinα)
that can be derived from eq. (4) by using the axis of the
helix (that rotates with β) instead of −ẑ. The different
behavior of the writhe is presented in fig. 2, while in fig. 3
we present the nucleosome with a varying amount of DNA
wrapped around it.
As required for the use of Fuller’s relation, there is a

homotopy between the straight ẑ-axis and any of the states
(partially or fully wrapped nucleosome plus rotated legs)
considered here. The continuity of the homotopy follows
from the fact that the chain continuously changes from
s∗ = 0 (i.e., the ẑ-axis) to any subsequent state thanks to
eq. (3).
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Fig. 3: (Colour on-line) Schematic representation of the various
stages of nucleosome unwrapping. The roman numerals indi-
cate how many turns are approximately wrapped (N stands
for 0). In order to show the effect of torque, the DNA double
helix is represented here as a ribbon that is untwisted in the
torsionless case.

Energy. – The total energy of a DNA chain of length
L with s∗ bound turns inside the nucleosome is the sum of
the bending, potential, adsorption and torsional energy:

Et(s
∗,β) = 2× A

2

∫ Ll(s∗,β)

s0

ṫ2l (s)ds

+f∆z(s∗,β)− 2
∫ s∗

0

dEads(s)

ds
ds

+
2π2C

L−Ln(s∗)
(n−Wr(s∗,β))2. (7)

Here

∆z(s∗,β) = Ln(s
∗)+ (rn(−s∗,β)− rn(s∗,β)) · ẑ

+2×
∫ Ll(s∗,β)

s0

(1− tl(s) · ẑ) ds (8)

is the shortening of the DNA end-to-end distance in the
ẑ-direction due to the bending of the legs and the wrapping
around the octamer. Following ref. [7] we assume that the
net adsorption energy density is given by

dEads
ds

=






ε− εb, if |s∗|! 1,
ε− εb− εel, if 1.67" |s∗|> 1,
−εb− εel, if |s∗|> 1.67.

(9)

Here ε is the pure adsorption energy density whereas
εb accounts for the DNA bending cost and εel for the
electrical repulsion between the two wrapped turns.
We choose ε= 1.51kBT/nm, εb = 0.75 kBT/nm and
εel = 0.2kBT/nm [7]. Finally, in the last term of eq. (7)
the quantity C is related to the torsional persistence
length lt via lt =C/kBT ; we assume here lt = 100 nm [14].

Fig. 4: (Colour on-line) A plectoneme with a nucleosome at its
end. R and γ are the plectoneme parameters.

To find the optimal configuration for given values of
f and n the energy, eq. (7), needs to be minimized with
respect to s∗ and β. Since we neglect in our theory entropic
contributions our results are only reliable for large enough
forces, f # 0.5 pN [6].
Plectoneme. – The unwrapping of the nucleosome is

eased for moderate positive torques or, as shown later, for
high negative torques. However, depending on the force
the DNA can also form a structure called plectoneme
(see fig. 4) that adsorbs approximately all the linking
number inserted in the system [14,15]. We do not expect
nucleosome unwrapping in the presence of a plectoneme as
the plectoneme can adsorb torsional stress more efficiently
once formed. To estimate the parameter range where the
plectoneme occurs, we give here the energy of a DNA
molecule of length L that contains a plectoneme of length
p" 0 with radius R and angle γ (fig. 4):

E(p) =
2π2C

L
(n−dWp)2+(f +dEb)p. (10)

Here dW = cos γ sin γ signn/2πR and dEb =
Acos4γ/(2R2) are, respectively, the writhe density,
which changes sign with n, and the bending energy
density of the plectoneme [15].
In eq. (10) we ignore the energetic contribution of the

end loop [15] assuming that the nucleosome sits at the end
of the plectoneme (fig. 4). In principle a plectoneme could
also appear somewhere else but the high bending energy
of an end loop makes it highly improbable.
By minimizing eq. (10) for p one finds that a plectoneme

is expected, i.e., p > 0, for all values of n with

n /∈
[
− (f +dEb)L
4π2CdW

+Wr(2),
(f +dEb)L

4π2CdW

]
. (11)

Here Wr(2) =−2.14 is the writhe for 2 fully wrapped
turns that for s∗ = 2 is independent of β (see fig. 2).
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Fig. 5: (Colour on-line) Diagram of state showing the configura-
tions with the lowest energy for L= 3500 nm in the (f , n/L)-
plane. (II ) (I ) and (N ) corresponds to the states shown in
fig. 3, while (N ′) and (P ) represent, respectively, the almost
unwrapped configuration and the plectoneme state character-
ized by eq. (11). The grey dash-dotted line represents the
writhe of the nucleosome when the legs are free to release
torsional stress.

With this term we account for the writhe absorbed by
the nucleosome that has around two fully wrapped turns
for n> 0 and not too large forces. Following ref. [15] we
use γ ≈ 1 and R≈ 1.8 nm when the salt concentration is
about 150mM. We stress that when a plectoneme forms,
it forms on top of the state the system was in before
its formation. For instance, if we start in fig. 5 from a
nucleosome with two-turns (state II) and decrease n we
obtain a plectoneme with a fully wrapped nucleosome at
its tip once eq. (11) is fulfilled. As mentioned above we do
not expect the nucleosome state to change with n inside
the plectonemic region.

Twist defects. – Apart from the plectoneme, twist
defects [16,17] can influence the nucleosome stability. A
twist defects is present in a nucleosome when one DNA
basepair is added or removed between two consecutive
nucleosome binding sites, resulting in a local under- or
overtwisting of the DNA. We can write an equation similar
to eq. (10) for the twist defects if we replace p→m∆l,
dW → k signn/∆l, dEb→ dEd/∆l and f → f signn. m is
an integer between 0 and 13 denoting the number of
defects. ∆l= 0.34 nm and k= 1/10 are, respectively, the
length and twist lost or gained by a defect. Finally dEd =
9kBT is the energetic cost of a defect [16]. Since m! 13
the shift in turns will be up to 1.3; a quick computation
reveals that the 13 defects form before a plectoneme
occurs. This changes the boundaries where the plectoneme
forms, namely we need to subtract 1.3 from the left side
of eq. (11).
The 1.3 turns per nucleosome are found in experiments

where chromatin fibers are put under positive torsional
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Fig. 6: (Colour on-line) The energy landscape near s∗ = 0
for f = 10pN, n= 0. The minimum of energy is very close
to the s∗ = 0 case which makes it easy for the nuclesome to
“evaporate.”

stress [18]. It was suggested that this can be explained
by a chiral transition of the nucleosome. Unfortunately
a comparison of our model to these experiments is not
possible as it involves a multinucleosome geometry and
forces where thermal fluctuations cannot be neglected. It
would be crucial to perform single nucleosome experiments
to see whether the observed strong asymmetry in the
response to positive and negative torsion is still present
which favors the picture of a chiral transition.

Results. – In fig. 5 we present the optimal nucleosome
configurations for a wide range of forces and n/L-values of
a DNA molecule with L= 3500 nm length. This diagram of
states is nearly identical for all experimentally reasonable
values of L, say for all L> 500 nm. We find 5 different
states, 3 of which are depicted in fig. 3 ((II ) fully wrapped,
(I ) one turn wrapped and (N ) unwrapped) and one in
fig. 4 ((P) fully wrapped plus plectoneme). In addition, we
indicate with (N ′) almost unwrapped configurations. That
state is, however, not stable against thermal fluctuations
as the global minimum is only tenths of kBT away from
the totally unwrapped state. A typical example is shown
in fig. 6. We therefore expect that the nucleosome typically
falls apart once it has unwrapped its last turn.
The negative writhe of the wrapping path makes the

nucleosome unwrapping highly asymmetric since the
factor (n−Wr(s∗,β))2 in the torsional energy, eq. (7),
favors wrapping, s∗ > 0, for n< 0 and unwrapping, s∗ = 0,
for n> 0. For large enough negative values of n, however,
the nucleosome unwraps to have more twistable DNA
available, see fig. 5. The factor 1/(L−Ln) in the twist
energy dominates then the behavior. In the diagram of
states, fig. 5, we indicate also by a dash-dotted line the
torsionless case where the unbound DNA is free to rotate.
This situation has been studied in ref. [5].
So far we have only determined the optimal configu-

rations via energy minimization. Of special experimental
importance is, however, also to know the energy barrier
between different states, especially at common boundaries
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Fig. 7: (Colour on-line) The force at which the minimum of the
energy around s∗ = 2 (1) and the one around s∗ = 1 (0) have the
same value, and the energy barrier necessary to cross from one
state to the other, as a function of n/L. Here L= 3500 nm.

in the diagram of states, fig. 5. Choosing experimental
parameters such that one has two minima between a large
barrier, one can observe the hopping dynamics between
them. This has been indeed observed in the torsionless
case where a fast hopping between states (II ) and (I )
was observed at a certain force value manifesting itself in
a change of the end-to-end extension [4,19]. The bound-
aries and corresponding barriers between (II ) and (I ) and
between (I ) and (N ′/N ) are shown in fig. 7. Note that
the system under torsion provides a much wider range of
parameters where one can observe hopping as compared to
the torsionless case. Especially for a wide range of forces
we predict two values of n/L where hopping should be
observed. It might be challenging to observe the branch
with the transitions at the more negative n/L-values as
these transitions are associated with much higher barrier
values (see fig. 5).
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