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Twirling DNA rings —Swimming nanomotors ready
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Abstract. – We propose a rotary DNA nanomachine that shows a continuous rotation with
a frequency of around 100Hz. This motor consists of a DNA ring whose elastic features are
tuned such that it can be externally driven via a periodic temperature change. As a result, the
ring propels itself through the fluid with a speed up to tens of nanometers per second.

The long-lasting dream of scaling mechanical devices and machines down to the nanoscale
(as popularized by Feynman [1] and carried on by several visionary groups worldwide [2])
continues to fire the imagination of researchers —now in the third generation. Among many
experimental difficulties that appear in this context, choosing the proper material for the
assembly of a nanodevice turns out to be crucial. Important material requirements are: sta-
bility, self-assembly ability, modularity, replicability, switchability, experimental tractability.
Presently, one of the most promising materials fulfilling those requirements is DNA [3]. As-
semblies based on DNA hybridisation chemistry [4–7] as well as conformational DNA transi-
tions [8] were successfully exploited to generate periodically switchable nanodevices. However,
despite their beauty and conceptual originality all of these devices suffer one major problem:
the large kinetic barriers involved in the switching process boost their switching time per cycle
to ∼ 103 s, four orders of magnitude slower than their natural counterparts (biological molec-
ular motors). A natural question arises then: Can one achieve subsecond switching times with
a DNA nanodevice? Can such a device be operated in some manner to swim directionally?
In this letter we show theoretically the principal feasibility of such DNA nanomachines.

Let us in the following propose a surprisingly simple nanomotor: a DNA miniplasmid,
cf. fig. 1(a). We will show that despite its structural simplicity a miniplasmid can be turned
into a nanomachine able to produce fN forces and self-propelling at speeds of tens of nanome-
ters per second through the fluid. In order to run the plasmid as a motor we use here the Euler-
angle ψ (cf. fig. 1(a)) as the relevant degree of freedom [9]. The main idea now is to induce a
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Fig. 1 – The operation principle of the DNA-minicircle propeller: (a) the twirling degree of freedom;
(b) the elastic energy as a ratchet potential; (c) the flow-field around the twirling ring induces its
translational velocity vz.

directed current 〈ψ̇〉 —in a manner similar to the rotation of a closed rubber tube around
its central circular axis— via non-equilibrium fluctuations and the ratchet effect [10, 11],
cf. fig. 1(b). As a result, the twirling ring generates a hydrodynamic flow-field (shown in
fig. 1(c)) that remarkably induces an efficient self-propulsion of the motor as detailed below.

The DNA nanomotor is formed by closing a DNA chain of length 2πR into a circle.
Crucial is to use a chain with an anisotropic bendability and bendedness —characterized by
two principal bending persistence lengths, l1 and l2, and intrinsic curvatures, κ1 and κ2, in
two corresponding perpendicular directions. For simplicity, we assume these parameters to be
independent of the arc-length throughout the chain [12]. The elastic distortion energy of the
chain parametrized by the arc length parameter s is then described by three Euler angles θ (s),
φ (s) and ψ (s) via Eel = 1

2kBT
∫ 2πR

0

∑
i=1,2,3 li (ωi − κi)

2 ds with ω1 = φ′ sin θ sinψ+θ′ cosψ,
ω2 = φ′ sin θ cosψ− θ′ sinψ and ω3 = φ′ cos θ+ψ′ [16]. l3 denotes the twist persistence length
and —for simplicity— we choose κ3 = 0. Assume now the chain being closed into an untwisted
ring [17]. For the case of DNA minicircles of short length (2πR � li) and with constant κi
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Fig. 2 – The rotational current 〈ψ̇〉 and the induced translational velocity vz as a function of the
dimensionless frequency f̃ of the temperature (potential) oscillations. The DNA ring has the following
parameters: R = 10nm, r0 = 1nm (typical DNA minicircle), l1 = 45nm, l2 = 50nm, κ1 = κ2 =
(200 nm)−1 leading to the ratchet potential displayed in the inset. Displayed are the asymptotic
expressions, eqs. (5) (dashed line) and (6) (dash-dotted line) together with the numerical solution of
eq. (2) (thin line) for a temperature ratchet with AT = 0.03. The thick solid line corresponds to an
oscillating potential ratchet with AE = 0.3. See text for details.

and li fulfilling the weak bending anisotropy condition max {|l1 − l2| /R, l1κ1, l2κ2} � l3/R
only the conformations close to the circular untwisted state will contribute, i.e., those close to
θ (s) = π/2, φ (s) = s/R and ψ (s) = const. This leads then to the required ratchet potential
acting on ψ:

Eel (ψ)
πkBT

=
l1 − l2

2R
cos (2ψ) + 2l1κ1 cosψ − 2l2κ2 sinψ. (1)

From eq. (1) we see that for generating a ratchet potential we need both non-zero bending
anisotropy, l1 − l2 	= 0, as well as non-vanishing intrinsic curvatures, κ1,2 	= 0. The inset
in fig. 2 demonstrates that reasonable small values of anisotropy and intrinsic curvature can
induce a well-defined ratchet potential.

The Fokker-Planck equation describing the time evolution of the probability density P (ψ, t)
of the Euler angle ψ writes

ζ
∂P

∂t
=

∂

∂ψ

(
∂Eel

∂ψ
P + kBT

∂P

∂ψ

)
(2)

with the friction constant ζ that we will compute below. As a source of non-equilibrium we
will choose here a time-dependent variation of temperature T (t), cf. ref. [19].

Before we compute the friction constant ζ we need to shed some light on the low Reynolds-
number hydrodynamics of the twirling DNA ring. The latter turns out to be peculiarly related
to the inviscid (ideal) fluid vortices (rings of smoke) and as a matter of fact both of them
propagate in analogous manner. To see this, we first remark that for a reasonable ring radius
R = 10 nm (a typical miniplasmid of ≈ 200 bp) and the DNA helix radius r0 = 1 nm the
slender-body approximation [20] is valid with the slenderness paramenter ε = r0/R = 0.1.
In the spirit of the slender-body theory one approximates the flow-field around the twirling
ring by superimposing rotlets [21] urot (x; s) = Γdc(s)

ds × (x − c (s)) / |c (s) − x|3 placed along
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the ring centerline c (s) with arclength parameter s. The rotlet strength Γ = 1
2ωcr

2
0 is given

in terms of the angular velocity ωc of the ring about c (s). The full velocity profile is then
given by u (x) =

∫ 2πR

0
urot (x; s) ds; cf. also the stream lines around the rotating ring shown

in fig. 1(c). When integrating u (x) over the DNA ring (slender torus) surface in the limit of
small r0/R, one obtains a net translational velocity in the z -direction:

vz (ωc) =
r2
0

2R

(
ln

(
8
R

r0

)
− 1

2

)
ωc. (3)

The fact that eq. (3) coincides with the well-known expression from ideal flow vortex theory [22]
should not surprise if we recall that a rotlet urot (x; s) is nothing else but the expression for the
velocity field of an ideal point vortex. But despite this kinematic analogy between the twirling
DNA and an ideal vortex ring, dynamically they are quite different. The propagation of an
ideal vortex ring does not require any external forces/torques and is governed by conservation
of kinetic energy and momentum. In sharp contrast to that the low Reynolds-number (Stokes)
flow is governed by dissipation and the motion of twirling DNA ring requires the action of a
torque Nc = 8π2x2

0ηRωc (η = 10−3 Pa s, the water viscosity) about the central axis c. The
latter expression can be verified by integrating the tangential stresses generated by u (x) over
the ring surface. More generally by virtue of the linearity of the Stokes equations we can
derive a resistance matrix (Mkl) relating the angular velocity ωc (about the circular axis c)
and velocity vz (in the z -direction) with the corresponding external torque Nc and force Fz:(

Fz

Nc

)
= 4π2η

(
M11 M12

M21 M22

)(
vz

ωc

)
. (4)

Combining the previous expressions obtained for vz (ωc) and Nc (ωc) (Fz = 0) together
with the result of Johnson and Wu [20] for the drag on a rigid slender torus we obtain
entries in the leading order: M11 = 2R (ln 8/ε + 1/2)−1, M22 = 2r2

0R and M12 = M21 =
r2
0 (ln 8/ε− 1/2) (ln 8/ε + 1/2)−1. Note that the symmetry of the resistance matrix being a

general feature of swimmers in the Stokes flow [23] provides a good check for the consistency
of the involved calculations. From eq. (4) we obtain the angular friction constant (entering
eq. (2) above) in leading order ζ = Nc (ωc) /ωc ≈ 8π2ηr2

0R. Note that the latter is the same (in
our ε � 1 leading-order expansion) as for a straight cylinder with radius r0 and length 2πR.

Having determined the friction constant ζ we return to the ratchet dynamics given by
eq. (2) with the twirling potential eq. (1). To obtain the directed twirling frequency ωc :=
〈ψ̇〉 = − 1

ζ 〈∂Eel

∂ψ P +kBT ∂P
∂ψ 〉 we follow [19] by choosing a periodic time-dependent temperature

variation as follows: T (t) = T0 [1 + AT sin(2πfT t)] with T0 the mean temperature, AT the
relative amplitude and fT the frequency of the temperature oscillation. For the case of fT

sufficiently larger than the inverse of the characteristic relaxation time τ0 = 4π2ζ/ (kBT0) of
the twirling degree of freedom (but still much smaller than the frequency of average thermal
molecular kicks) an 1/fT asymptotic expansion for the current 〈ψ̇〉 can be employed [24].
After a long calculation we obtain (for fT > fres) 〈ψ̇〉 up to terms of order O

(
f−3

T

)
:

〈
ψ̇

〉
=

12π3A2
T (kBT0)

3
l1l2κ1κ2 (l2 − l1) /R

f2
T ζ

3
∫ 2π

0
dψe−

Eel(ψ)
kBT

∫ 2π

0
dψe

Eel(ψ)
kBT

. (5)

From eq. (5) we see that for an isotropically bendable DNA sequence (l2 = l1) the directed
current vanishes. The same is true if the intrinsic curvature direction coincides with one of
the principal axes (i.e. if κ1 or κ2 vanish). Both observations are intuitive as in either case
the ratchet potential, eq. (1), becomes left-right symmetric and the ratchet effect disappears.
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The low-frequency adiabatic limit is obtained from the asymptotic expansion of P (ψ̃, t̃)
(ψ̃ = ψ/2π, t̃ = t/τ0) for small parameter f̃ = fT τ0, i.e., P ≈ P0 + f̃P1 + f̃2P2. Rather
involved calculations lead to [25]

〈
ψ̇

〉
= − f̃2

τ0

∫ 1

0

dt̃
1
F
F
−−→
∂t̃P1 (6)

with E(ψ̃, t̃) = F (ψ̃, t̃)−1 = e−Eel(ψ̃)/kBT (t̃) and the abbreviations
−−→
(...) and (...) defined as

in [24] but with the integrations with respect to ψ̃. Furthermore, the density distributions
P0 and P1 from the upper expansion are given by P0 = E/E (Boltzmann distribution in the
adiabatic limit) and P1 = T0

T E
(−−→
Fc1 − 1

E
E
−−→
Fc1

)
with c1 = −−→

∂t̃P0 − 1
F
F
−−→
∂t̃P0.

Equations (5) and (6) together with eq. (1) and ζ = 8π2ηr2
0R allows us to get the twirling

speed ωc = 〈ψ̇〉 and by virtue of eq. (3) the induced translational velocity vz (ωc) for arbitrary
DNA elastic parameters li=1,2 and κi=1,2.

Numbers and experimental aspects. How fast can we operate the twirling ring machine?
We shall assume some realistic parameter values for the DNA ring: R = 10 nm, r0 = 1 nm
(typical DNA minicircle) leading to ζ = 2 · 10−7kBT s. Furthermore, we set l1 = 45 nm,
l2 = 50 nm, κ1 = κ2 = (200 nm)−1 which corresponds to a rather modest anisotropy and
intrinsic curvature. Values like these are readily found in nature, e.g., in weak nucleosome
positioning sequences like 5sRNA [13, 14]. DNA being wound within the nucleosome in a
similar manner as in a tight minicircle is believed to corkscrew within the nucleosome complex
in a similar fashion as the twirling motion considered here [15]. The barriers to the corkscrew
motion of nucleosomal DNA become analogous to barriers to the twirling mechanism and
analogous principles of sequence design apply.

For the temperature variation amplitude we choose ∆T = ±10 K, i.e., AT ≈ 1/30 (at
room temperature T0 = 300 K). Figure 2 provides a log-log plot of the rotational current
and the corresponding drift speed of the ring as a function of the dimensionless frequency f̃
of the temperature variation. The thin solid curve gives the numerical result obtained from
eq. (2), the two straight lines correspond to the analytical results for the two asymptotic cases,
eqs. (5) and (6). As can be seen from this plot the two limits show a f̃−2- and f̃2-dependence,
respectively, in accordance with eqs. (5) and (6). The maximal rotational current is achieved
in the crossover region, namely ωc ≈ 200 rad/s for f̃ ≈ 10−1. Following eq. (3), this implies a
translational velocity of vz = 50 nm/s.

Such fast temperature oscillations are technically feasible and might be generated by adia-
batic pressure variations via ultrasound, e.g. as nowadays employed in the field of sonochem-
istry and sonoluminescence [26]. However, despite potentially large temperature oscillations
(up to 3000 K on short time scales) achievable by this method, the shearing forces might pose
a problem for the DNA molecule integrity. Another more promising method is to exploit the
broad electromagnetic absorption spectrum of the DNA molecule (and its ordered water shell)
ranging from UV to microwave frequencies and to heat the molecule selectively with short light
pulses. The covalent modification of the DNA backbone with artificial fluorophores [27] and
nanoncrystals [28] can expand the range of frequencies for electromagnetic heating. In fact,
inductively heated gold nanoparticles attached to the DNA backbone have been successfully
used to control the melting of DNA [29].

This might also point towards an alternative way of driving the ratchet, namely via a
periodic variation of the elastic properties of the ring. Operating the system close to the DNA
duplex melting temperature is likely to induce strong oscillations in the overall ring stiffness.
Above the melting temperature of 50–70 ◦C [30] the DNA molecule dissociates into two sin-
gle strands with negligible bending stiffness [31]. Therefore it is not unreasonable to assume
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that the oscillation of the bending potential amplitude becomes the major effect then varying
by a factor of ∼ O(1) (in the vicinity of the melting temperature). The thick solid line in
fig. 2 shows the rotational current obtained when the elastic energy is varied as Ẽel (ψ, t) =
Eel (ψ) (1 + AE sin (2πfEt)), where we chose the relative amplitude AE = 0.3. As can be seen
from fig. 2, the maximal current of this oscillating potential ratchet occurs roughly at the same
frequency as that of the thermal ratchet but the value of ωc is much higher, namely on the order
of 2×104 rad/s which implies a quite notable translational velocity of vz = 5µm/s. As a com-
parison, a typical bacterium moves at 30µm/s. Our ring ratchet (with oscillating potential)
resembles in many respects “real” biological nanomotors. Besides its nanoscopic size (radius
10 nm), swimming efficiency (0.8%) and speed (4µm/s) it can generate forces and torques close
to that of biomolecular motors. Although the net translational force resulting from eq. (4)
Fz = 4π2ηM12ωc ≈ 0.6 fN is comparably small (due to cancelling of most of the stresses), the
local torque Nc = 8π2ηr2

0Rωc ≈ 0.004kBT and the force acting at the DNA surface Floc =
Nc/r0 = ζωc/r0 ≈ 16 fN are significant if we consider the simplicity of the mechanism behind.

From an experimental point of view one should be aware of the fact that a ring (twirling or
non-twirling) looses its initial orientation almost instantaneously due to rotational diffusion.
The typical relaxation time scale of this process is on the order ηR3/ (kBT ) (up to logarithmic
corrections [32]) which for a ring with R = 10 nm leads to 10−7 s. That means that a single
twirling ring in solution will not perform any noticeable translational drift. A possible solution
to the problem is to put the ring on a “track”, e.g. to thread it on a straight DNA chain.
A ring with speed 5µm/s will then overcome dispersion due to translational diffusion after
2 seconds. Another promising direction is to prepare semi-dilute or dense solutions of such
rings and then study their response to an induced twirling. It is known that such solutions
of self-propelled particles show hydrodynamic instabilities [33], e.g. the low-Reynolds number
turbulence observed for suspensions of bacteria [34]. Nanomotors like the one presented here
might be used as mixer in nanofluidic devices (to, e.g., speed up diffusion-limited reactions)
or to drive a solvent flow through a nanochannel.
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