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Abstract. We investigate the bending of flexible charged membranes due to the presence of rigid rodlike
macroions in the framework of the Debye-Hückel approximation. When the macroions are fixed in space
at some distance from the bilayer the membrane bends towards them; we calculate the exact deformation
profile. On the other hand a macroion which is adsorbed on the membrane causes a deflection of the
bilayer. Finally, we consider swollen lamellar polyanion/charged-lipid complexes where the macroions are
intercalated between charged lipid bilayers. We predict the occurrence of a double adsorption (pinching
effect) of the macroion for sufficiently flexible membranes.

PACS. 68.10.-m Fluid surfaces and fluid-fluid interfaces – 64.70.Md Transitions in liquid crystals –
82.70.Kj Emulsions and suspensions

1 Introduction

Recent experimental studies have reported the self-
assembly of biological polyanions (DNA, polypeptides...)
and cationic lipids into lamellar complexes with the
macroions intercalated between the charged lipid bilay-
ers [1,2]. An understanding of the interaction between the
macroions and the charged membranes is of much current
interest since cationic lipids are used as non-virial vectors
for DNA and protein delivery (a discussion of the differ-
ent strategies for human gene transfer can be found in
Ref. [3]).

The present theoretical studies focus on the case of
condensed lamellar DNA/lipid complexes where the wa-
ter gap between neighboring bilayers is of the same or-
der as the diameter of the DNA molecule and where the
DNA form a two-dimensional smectic array. Dan explains
some experimental findings on these complexes by iden-
tifying two mechanisms which determine the DNA spac-
ing, namely the electrostatic repulsion between the rods as
well as the perturbation of the lipid bilayers near to the
DNA [4]. Bruinsma and Mashl calculate more explicitly
the repulsive electrostatic force between the DNA rods by
assuming that the cationic lipids (which are mixed with
neutral ones) act as a two-dimensional gas of “counter-
lipids” [5].

Experiments on both DNA, and polypeptide/cationic-
lipid complexes, have been performed where the relative
amounts of neutral lipids were varied, thereby changing
the charge density of the bilayer [1,2]. For the DNA com-
plexes investigated by Rädler et al. [1] it was found that
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the distance dR between the rods increases strongly with
decreasing charge density of the bilayer whereas the mem-
brane spacing d increases only slightly. On the other hand
in a recent study on polypeptide/cationic-lipid complexes
it was shown by Subramanian et al. [2] that d increases
significantly upon dilution of the charged lipids. For high
lipid dilution it was found that the water gap between
the membranes is much larger than the diameter of the
macroions. Compared to the densely packed system ob-
served by Rädler et al. these swollen lamellar structures
have more degrees of freedom due to the presence of much
free space. A given macroion may be adsorbed on either
membrane and may cause its bending near the adsorp-
tion side. Alternatively, a double adsorption may occur:
the macroion may be pinched between both neighboring
membranes which bend towards it. Although the persis-
tence length of DNA is much larger than that of polypep-
tide chains, experiments indicate that the difference in the
dilution behaviors of the systems investigated in references
[1,2] is mainly due to the different flexibilities of the bilay-
ers; the membranes in reference [2] are roughly two times
as flexible.

There exist many studies on the problem of the bend-
ing of charged bilayers where the electrostatic contribution
to the bending modulus is calculated for different regimes
of the membrane surface charge density and aqueous elec-
trolyte strength [6–13]. On the other hand, there is – to
our best knowledge – no study on the membrane bending
due to the presence of polyions. We restrict the current
study to the case where salt is present so that the elec-
trostatic interaction is screened (Debye-Hückel regime).
We note that the salt-free case is much more involved due
to the non-linearity of the problem (Poisson-Boltzmann
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Fig. 1. A regular lattice of polyanions between two cationic
membranes. Schematically depicted is the deformation of the
membranes.

equation); a discussion of the electrical potential around
a rod embedded in a flat membrane can be found in ref-
erence [14].

In the next section we discuss how the membrane
is deformed due to the presence of macroions fixed in
space at some distance from the membrane; in the strong-
electrolyte limit this problem can be calculated rigorously.
In Section 3 we discuss how an adsorbed macroion af-
fects the membrane conformation. In Section 4 we con-
sider lamellar polyion/cationic-lipid complex and discuss
the possibility of a pinching effect. We close the paper in
Section 5 with a summary of conclusions.

2 Polyions fixed in space near a membrane

In this section we calculate how charged, say cationic
membranes are deformed due to the presence of rodlike
polyanions which are fixed in space. We consider two
charged membranes which are parallel to the XY -plane
and have the mean positions z = ± d (see Fig. 1). These
membranes may represent two neighboring layers in a
stack of membranes in the lamellar state or they may
belong to two vesicles in near contact. Each membrane
consists of a bilayer of cationic surfactants and carries the
uniform (fixed) charge density σ/2 on each side. We im-
pose the boundary condition ∂Φ/∂n|SM = 2πσ/ε on the
electrical potential Φ in between the two membranes; n
denotes the inward normal at SM , the inner surface of
the membrane. This boundary condition assumes implic-
itly the independence of the inner and outer potentials,
i.e., the membrane is taken to be opaque. This is a rea-
sonable approximation as long as the energy stored in the
electrical field within the membrane is negligible; one can
show that this is the case as long as the thickness dM of
the membrane fulfills dM � εL/εκ (ε: permittivity of wa-
ter, εL: permittivity of the lipid within each membrane)
[6,8,11]. Typically ε/εL ≈ 40 and dM ≈ 20 Å so that this
is here a reasonable assumption. In the following we as-
sume the presence of polyanions between the membranes;
they are modelled as rigid rods with radius r0 and length
L with L � d � r0. The surface charge density of the
cylindrical macroions is denoted by −σR and their charge
density per length by −ρ = −2πr0σR. We assume that the
rods are located at the midplane of the two membranes,
i.e. at z = 0 and that their axes point towards the Y -
direction. Furthermore they form a regular lattice with

the wavevector q0 (cf. Fig. 1). As we will see, this sim-
ple geometry allows a rigorous calculation of the problem
(for small deformations); furthermore it resembles in some
cases the typical arrangement in polyanion/cationic-lipid
complexes (see Sect. 4).

The polyions will induce a bending of the flexible mem-
branes towards them; we denote the (mean) position of the
upper and the lower bilayer by d−u (x) and −d+u (x), re-
spectively. Assuming that the displacement u (x) has the
same periodicity as the underlying lattice of macroions,
i.e. u (x+ 2π/q0) = u (x), we can express u (x) by the
following Fourier series:

u (x) =
∞∑
n=1

an cos (nq0x) . (1)

Due to the strong screening the amplitudes of the different
modes are very small so that they are (nearly) decoupled.
Furthermore it can be shown that undulations with other
wave vectors (for instance q0/2) are energetically not fa-
vorable.

The free energy F per unit area has the form

F = Fbend + Fel (2)

where Fel denotes the electrostatic contribution and Fbend
is the cost in curvature energy kc

(
∇2u

)2
of the two mem-

branes with kc being the bending rigidity. Fbend may be
rewritten as [15]

Fbend = kc
∑
n

a2
nn

4q4
0. (3)

(In Eq. (2) the surface tension is explicitly taken to
be zero).

In the following we assume a high concentration of
salt so that we can use the Debye-Hückel approximation
in which the Poisson-Boltzmann equation for the electric
potential Φ becomes linear: ∆Φ = κ2Φ. Here the Debye

screening length κ−1 is given by κ−1 = (8πn∞lB)
−1/2

where n∞ is the bulk electrolyte concentration and lB =
e2/εT denotes the Bjerrum length (T is the tempera-
ture in units of the Boltzmann constant kB and e is the
electronic unit charge); in an aqueous solution ε ≈ 80
and thus lB ≈ 7 Å. Now Fel is the sum of the electro-
static contribution and of the translational entropy of the
small salt ions. In the Debye-Hückel regime it is given
by [16,17]

Fel =
1

2A

∫
dSσ′Φ (4)

where the integration extends over the boundaries of the
system having the charge density σ′; A is the correspond-
ing area in the XY -plane. In our problem the boundaries
are constituted by the two membranes and by the rods
with the charge densities σ′ = σ/2 and σ′ = −σR, respec-
tively. In the following we calculate the potential ΦM of
the two membranes (without the macroions in between);
as we will see we can determine Fel from ΦM alone.
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In order to calculate ΦM (up to first order in the am-
plitudes an) we have to solve the Debye-Hückel equation
subject to the following two boundary conditions: (i) due
to symmetry the Z-component of the field is zero at z = 0.
(ii) At ±d∓u (x) one has ∂ΦM/∂n = 2πσ/ε. More explic-
itly, the boundary condition at z = d − u (x) takes the
form (neglecting terms of the order a2

n)

−
∂ΦM

∂x

∞∑
n=1

annq0 sin (nq0x) +
∂ΦM

∂z
=

2πσ

ε
· (5)

Expanding ΦM in the amplitudes an up to first order leads
to ΦM = ϕ(0) +

∑
n anϕ

(n) where each ϕ(n) fulfills the

Debye-Hückel equation separately. The ϕ(n) can be ex-

panded in Fourier series ϕ(n) =
∑
mB

(n)
m (z) cos (mnq0x)

and thus B
(n)
m (z) = b

(n)
m cosh (κnmz) with κnm =√

κ2 + (nmq0)2. The coefficients b
(n)
m follow from the

boundary condition and it turns out that only the diago-

nal terms b
(n)
n are non-vanishing. From this procedure it

follows that

ΦM =
2πσ

εκ

(cosh (κz)

sinh (κd)
+ κ2 coth (κd)

×
∞∑
n=1

anκ
−1
n

cosh (κnz)

sinh (κnd)
cos (nq0x)

)
. (6)

Note that due to symmetry ∂ΦM/∂n|SR ≡ 0 for a van-
ishing radius of the rods, i.e. for r0 → 0 (SR denotes the
surfaces of the rods).

The electrostatic free energy of the system is given
by equation (4) and consists here of two parts: the
contribution of the membrane-membrane interaction

FMM =
q0σ/2

4π

∫
SM

dxΦM and the rod-membrane part

FMR = −2
q0σR

4π

∫
SR
dxΦM . The prefactor 2 in the expres-

sion for FMR accounts for the integration of the potential
ΦR of the rods along the membranes which leads exactly
to the same value than the integration of ΦM along the
rods1.

The membrane-membrane part follows from FMM =
q0σ

4π

∫ 2π/q0
0

dxΦM (x, d− u (x)) which leads to

FMM =
πσ2

εκ
coth (κd) . (7)

In equation (7) we have neglected terms of the order a2
n.

As discussed by Pincus, Joanny and Andelman [10] these
terms lead to a renormalization of the bending constant,

1 The potential Φ can be decomposed in two parts: ΦM
which is a part of Φ that obeys ∂ΦM/∂n|SM = 2πσ/ε and

∂ΦM/∂n|SR = 0 and ΦR that obeys ∂ΦR/∂n|SM = 0 and

∂ΦR/∂n|SR = −4πσR/ε. Now Φ = ΦM + ΦR and one finds

from equation (4) two contributions to the rod-membrane
interaction, namely F1 = − (σR/2A)

∫
SR

dSΦM and F2 =

(σ/4A)
∫
SM

dSΦR. It can be shown rigorously that F1 = F2.

Hence FMR = 2F1.

k′c = kc + δk|el where δk|el = 3πσ2/8εκ3 ≈ T/κ3lBλ
2

(λ = e/2πlBσ is the Gouy-Chapman length). Note that
due to κλ � 1 and κlB � 1 one has δk|el � kc for
a wide range of parameters. In the following we use the
bare bending rigidity kc, keeping in mind that one has to
replace it by k′c when δk|el becomes comparable to kc.

The rod-membrane interaction term is given by FMR =

−2
q0σR

4π
2πr0ΦM (x = z = 0). From equation (6) we find

FMR = −
σρq0

εκ

(
sinh−1 (κd)

+ κ2 coth (κd)
∑
n

anκ
−1
n sinh−1 (κnd)

)
. (8)

Assuming κd � 1 and κq−1
0 � 1 equation (8) can be

approximated by

FMR = −
2σρq0
εκ

exp (−κd)

(
1 + κ

∑
n

an

)
. (9)

In the summation over n in equation (9) we have neglected
terms of the order n2q2

0d/κ. Assume, for instance, that
q0d ≈ 1; then the summation in equation (9) breaks down

at n = n0 ≈ (κd)
1/2

. The modes with n� n0 are damped
exponentially (cf. Eq. (8)). However, since – due to the
bending rigidity – the amplitude an decreases rapidly with
n (see below) one may use equation (9) also for larger n-
values.

We can now determine the deformation profile u (x) of
the membranes, equation (1). The amplitudes an follow
from the minimization of F , equation (2), which leads to

an =
σρ exp (−κd)

εkcq
3
0

1

n4
· (10)

The n−4-dependence of the amplitudes reflects the fact
that undulations with shorter wavelengths are suppressed
due to the curvature energy (cf. Eq. (3)); the exponen-
tial term follows from the screened interaction between
the macroions and the charged surfactants. From equa-
tions (1, 10) we find for the displacement u (x) of the bi-
layers

u (x) =
σρ exp (−κd)

εkcq
3
0

∞∑
n=1

cos (nq0x)

n4

=
σρ exp(−κd)

εkcq
3
0

(
π4

90
−

1

48
(q0x (2π−q0x))

2

)
. (11)

The expression on the right-hand side is valid for 0 ≤
q0x ≤ 2π[18], i.e., for the part of the membrane between
the two polyions fixed at x = 0 and x = 2π/q0. The
continuation to other parts of the bilayer is straightfor-
ward. The resulting undulation has a similar appearance
as the single first mode with n = 1; due to the additional
higher modes, however, it is slightly more pointed towards
the polyions and slightly more flat in the other parts.
We note that these considerations can be easily trans-
lated to the case when the membranes and macroions are
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equally charged. Then one has to replace σ by −σ, an
by −an and u (x) by −u (x). Furthermore, we note that
another geometry, namely an infinite stack of membranes
(at the mean positions z = ± d,± 3d,± 5d, ...) can also
be calculated. Assume the following positions of the rods:
x = 0,± 2π/q0,± 4π/q0, ... for z = 0,± 4d,± 8d... and
x = ±π/q0,± 3π/q0, ... for z = ± 2d,± 6d,± 10d... Due
to symmetry the Fourier components a′n are now given
by a′n = 2an for n odd and a′n = 0 for n even. The re-
sulting deformation profile of each membrane shows then
symmetric undulations that reflect the symmetry of the
positions of the macroions.

Consider now the curvature uxx of the membranes
(again for the geometry depicted in Fig. 1). For 0 ≤ q0x ≤
2π it is given by

uxx (x) =
σρ exp (−κd)

4εkcq0

(
q0x (2π − q0x)−

2π2

3

)
. (12)

For other parts of the membrane one has to shift the ar-
gument accordingly. Note that at the x-positions of the
rods, i.e. at x = 0, ± 2π/q0, ± 4π/q0..., the curvature has
cusps, a fact which comes from the approximation which is
made by going from equation (8) to (9). Indeed, all modes

beyond n > n0 ≈ (κd)1/2 (assuming q0d ≈ 1; see above)
are suppressed exponentially, so that the cusps of the cur-
vature will be smoothed out for length scales of the order
(n0q0)

−1
.

In this section we assumed that the membranes are
only slightly deformed and therefore calculated the free
energy only up to the lowest order terms in an. From
equation (11) follows that due the bending of the mem-
branes their nearest distance to the polyions is lowered by
∆d = (π/720)σρ exp (−κd) d3

0/εkc where d0 = 2π/q0 de-
notes the distance between neighboring rods. Due to the
screening ∆d ∝ exp (−κd) so that usually the displace-
ment is small. Note, however, that one has ∆d ∝ d3

0/kc;
thus for a large separation d0 between the rods and/or very
flexible membranes ∆d may become of the order of d. In
this regime our approximation breaks down; especially the
electrostatic membrane-membrane repulsion plays then a
crucial role whereas this effect was neglected above (see
the discussion below Eq. (7)).

Ultimately, very flexible membranes may touch the
macroion. In this case the polyion is pinched between
the membranes: even if we release the condition that the
macroion is fixed in space it cannot move anymore. We
will discuss this pinching effect in more detail in Section 4
when we compare it with other possible rod-membrane in-
teractions. In the next section we will discuss the case of
a macroion adsorbed on a single membrane.

3 Adsorbed macroion

Consider a rigid polyanion adsorbed on a cationic mem-
brane which carries the fixed constant charge density σ.
Assume that the charge of the polyion is located along
a thin rigid rod with charge density (per length) −ρ and

α
r0

σ
−ρ

(a)

α

σ

(b)

R−ρ

r0

x1 x2

Fig. 2. Deflection of a flexible cationic bilayer due to the pres-
ence of an adsorbed polyanion. (a) and (b) depict two simplified
models from which the deflection angle α can be estimated (see
text for details).

total length L� κ−1. Due to the geometry of the polyion
(uncharged side groups, hydration shell etc.) there is a
typical minimal distance r0 � L between the charged rod
and the membrane. The attraction between the rod and
the membrane will lead to a bending of the bilayer as
schematically depicted in Figure 2. In this section we es-
timate the deflection angle α due to the presence of the
macroion using simplified models.

It is clear that the strongest bending of the membrane
is near the adsorption side since there the electrical field
emanating from the rod is perpendicular to the surface of
the bilayer. In the most simple approach we assume that
the membrane is folded at the adsorption side and flat
elsewhere (cf. Fig. 2a). This assumption is reasonable as
long as the bending rigidity can be neglected compared to
the electrostatic effects (see below). The deflection angle
α is then determined by the interplay between two antag-
onistic effects: (i) with increasing α the free energy FMR of
the rod-membrane interaction decreases. (ii) On the other
hand an increasing deflection leads to an increase of the
interaction energy FMM between the two flat parts of the
membrane at the left and right of the adsorption side.

In order to calculate the change ∆FMR of the rod-
membrane interaction due to bending we have to calculate
the potential ΦR of the rodlike macroion. Due to symme-
try (we do not account for the presence of the lipid bilayer,
i.e., we assume here the membrane to be transparent2)

2 The presence of the lipid bilayer leads to an infinite set of
images of the rod charges and the charges on the membrane.
Consider a charge q at the distance d� κ−1 from a bilayer of
thickness dM and permittivity εL. The contribution ΦI of the
image charges to the potential at the position of the charge can
be calculated using the method presented in reference [19]. One

finds ΦI = β
∫∞

0
dk
(
e−2k(d+dM ) − e−2kd

)
/
(
1− β2e−2kdM

)
with β = (εL − ε) / (εL + ε); this leads to the following lim-
iting laws: ΦI ' − (dM/d)

(
β/
(
1− β2

))
(1/2d) for dM � d
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one has to solve the Debye-Hückel equation in cylindrical
coordinates which leads to

ΦR (r) = −
2ρ

ε
K0 (κr) (13)

where K0 is a modified Bessel function [21]. In the fol-
lowing we will often make use of the asymptotic behav-
ior of K0 for small and large arguments: K0 (x) ' − lnx

for x � 1 and K0 (x) ' (π/2x)
1/2

exp (−x) for x � 1.
The rod-membrane interaction is now given by FMR =
2σL

∫∞
0 dx1ΦR (r (x1)) where r (x1) denotes the distance

between the rod and the point x1 on the membrane. For

small α this distance is given by r (x1) =
(
x2

1 + r2
0

)1/2
−

2−1x1r0
(
x2

1 + r2
0

)−1/2
α. Hence

∆FMR ' −
2σρLr0α

ε

∫ ∞
0

du uK1

((
u2 + κ2r2

0

)1/2)
×
(
u2 + κ2r2

0

)−1/2
(14)

where we used the relationK ′0 (z) = −K1 (z) [21]. In order
to estimate the integral we use the fact that K1 (x) = 1/x
for x � 1 whereas for x � 1 the integrand decays expo-
nentially. Thus for κr0 � 1 ∆FMR may be approximated
as follows:

∆FMR ≈ −
2σρLr0α

ε

∫ 1

0

du
u

u2 + κ2r2
0

'
2σρLr0 ln (κr0)

ε
α. (15)

Now we turn to the calculation of the interaction energy
between the two flat parts of the membrane. The contri-
bution of the electrical potential at x2 which stems from a
stripe of width dx1 at x1 is dΦM =2σε−1K0 (κl (x1, x2)) dx1

where l (x1, x2) denotes the spacial distance between x1

and x2. For small α it is given by l (x1, x2) ' x1 +
x2−α2x1x2/2 (x1 + x2). Now FMM = σL

∫∞
0 dx2

∫∞
0 dΦM

(thin membrane) and ΦI ' −β/2d for dM � d (thick mem-
brane) (cf. also the case of a charge next to a dielectric sphere
[20]). The experimental situation in reference [2] (d ≈ 10 Å,
dM ≈ 24 Å) corresponds to the crossover region between these
two limiting cases. We show now that even if we assume the
membrane to be much thicker than the actual experimental
value the effect of the image charges is usually smaller than
the direct electrostatic interaction. Consider a rod at a dis-
tance d away from an semiinfinite dielectric εL ≈ 2. The po-
tential of the rod image at the position of the rod is then Φ1 '
−2ρε−1 ln (2κd) ' 0.018e Å−1 (for ρ = 0.67e Å−1, ε = 80,
κ−1 = 60 Å, d = 10 Å). On the other hand, the interaction with
the charges at the phase boundary (and their image charges)
is given by Φ2 ' 2π (2σ/2) ε−1κ−1 exp (−κd) ' 0.04e Å−1 (for
σ = 0.01e Å−2). The presence of image charges leads a re-
pulsive contribution to the interaction between rod and mem-
brane; however, in our calculations in Sections 3 and 4 we will
only include the stronger direct electrostatic interaction.

and thus

∆FMM '
σ2Lα2

εκ2

∫ ∞
0

du

∫ ∞
0

dvK1 (u+ v)
uv

u+ v

' 0.251
σ2Lα2

εκ2
· (16)

We find now α by minimizing ∆F = ∆FMR + ∆FMM .
From equations (15, 16) it follows that

α ≈ −
4κρ

σ
κr0 ln (κr0) . (17)

Note that equation (17) is valid for κr0 � 1; at κr0 = 1
we expect a crossover to an exponentially decreasing r0-
dependence of α due to screening. This shows together
with α→ 0 for r0 → 0 (cf. Eq. (17)) that one has a non-
monotonic dependence of α on r0. It is indeed clear (in the
framework of our approximation) that for r0 = 0 the local
bending of the otherwise flat membrane will not change
the rod-membrane interaction FMR. These considerations
indicate that the deflection of the membrane will be maxi-
mal when κr0 is of the order unity; we will show this more
rigorously in the more refined model described below. An-
other interesting effect is the role of the charge densities:
for κρ� σ the membrane is only slightly disturbed by the
adsorbed rod (see Eq. (17)). When the macroion is higher
charged so that its charge is of the same order as the oppo-
site charge of the neighboring part of the membrane, i.e.
when κρ ≈ σ, the rod-membrane attraction will overcome
the repulsion between the two parts of the membrane and
α is of the order unity (for κr0 ≈ 1).

We note that this result also includes the case where
both, the polyion and the bilayer carry charges of the same
sign; one has then simply to replace in equation (17) ρ by
−ρ. In this case α becomes negative, i.e., the membrane
bends away from the macroion. This situation is related
to the seemingly remote problem of the structure of in-
terpenetrating polyelectrolyte chains [22]. In a semidilute
polyelectrolyte solution the conformation of a given chain
shows deflections due to the presence of other chains so
that its persistence length decreases. In the salt regime
the angle θ of an individual deflection of a test chain due
to the presence of a perpendicular rod at the distance r
can be estimated to be θ ' κr exp (−κr) [23]. Note that
for ρ = κσ the angle α of deflection of the membrane,
equation (17) scales similar to θ.

Let us turn to a more refined model that also accounts
for the bare bending rigidity kc of the membrane. It allows
to estimate the first-order correction term to α for suffi-
ciently small kc. The polyanion is modelled as a cylinder
of radius r0 and length L, its charges are located in the
middle axis of the cylinder, see Figure 2b. For simplicity
we assume that the membrane can bend only directly at
the rod with a curvature r−1

0 and is flat elsewhere. For a
given angle of deflection α one finds for the cost in curva-
ture energy

∆Fbend =
kcL

2r0
α. (18)
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The change of the interaction energy ∆FMR between the
rod and the membrane can be simply calculated by noting
that due to symmetry the interaction between the charged
rod and the flat parts of the membrane is exactly the same
as the interaction energy between the rod and the com-
pletely flat membrane (α = 0). Thus the interaction be-
tween the curved part of the membrane and the rod alone
determine ∆FMR:

∆FMR = −
2σρLr0K0 (κr0)

ε
α. (19)

For κr0 � 1 the change ∆FMM in the electrostatic self
energy of the membrane is again given by equation (16).
Minimizing ∆F = ∆Fbend +∆FMR +∆FMM with respect
to α we find for κr0 � 1:

α '
4κρ

σ
κr0K0 (κr0)−

kcεκ
2

σ2r0
· (20)

The first term in equation (20) stems from the electro-
static interaction and shows indeed the same scaling as
equation (17). The second term represents a reduction of
α due to the bending rigidity. Equation (20) is only use-
ful as long as the correction term is much smaller than
the purely electrostatic contribution to α. This leads to
the condition kc � −4ρσε−1r2

0 ln (κr0). For stiffer mem-
branes the assumed geometry does not describe the sit-
uation properly since the cost in curvature energy for
a local curvature r−1

0 is too high. For such membranes
one has a smaller curvature r−1 < r−1

0 near the polyion
so that one may have a quite small deflection. Experi-
mentally both situations may occur: the condition on kc
for the electrostatics-dominated case can be rewritten as
kc < −4lBTr

2
0 ln (κr0) /bAσ where b denotes the average

distance between charges on the rod andAσ is the area per
charge on the membrane. Typical values for polypeptide
cationic lipid complexes are r0 ≈ 10 Å, b ≈ 1.5 Å (as-
suming no Manning condensation) and Aσ ≈ 68−680 Å2

depending on the amount of neutral lipid [2]. This to-
gether with kc ≈ 5T−20T shows that depending on the
relative amount of neutral lipid and depending on κ both
situations may occur.

Equation (20) describes the case κr0 � 1. For the case
κr0 � 1 we have to reconsider ∆FMM , equation (16),
which describes the repulsion between the two flat parts
of the membrane. Now κr0 � 1 and thus for α� (κr0)

−1

the minimal distance between the flat parts is much larger
than κ−1 and the interaction between them can be ne-
glected. The leading contribution to ∆FMM comes then
from its curved part which can be easily calculated by us-
ing the electrostatic contribution to the curvature energy
which is given by ∆FMM = 2−1 δk|el Lr

−1
0 α with δk|el =

3πσ2/8εκ3 (see the discussion in the previous section).
Thus we find that for κr0 � 1 the leading term of ∆FMM

grows linearly in α (instead of the α2-dependence in
Eq. (16)). Assume now that kc = 0. Comparing∆FMR and

∆FMM we find that α→ 0 as long as σ > (32/3) (2π)
−1/2

κρ (κr0)
3/2

exp (−κr0). Since this is usually the case we
find that α is extremely small for κr0 � 1. Thus one may

σ

R

−ρ
r0

σ

r( )1+ 2 0

Fig. 3. Polyanion adsorbed between two neighboring mem-
branes (pinching effect).

have α � (κr0)
−1

; then ∆FMM is again given by equa-
tion (16) and α by equation (20).

4 Double adsorption versus single adsorption
in swollen lamellar structures

Here we discuss the possible ways in which the polyanions
are localized within a lamellar structure of cationic lipids.
When we are above the adsorption threshold3 there are in
general two possibilities: (i) the polyions may be adsorbed
on one of the two neighboring membranes (single adsorp-
tion), cf. Figure 2. (ii) On the other hand the macroions
may be pinched between both neighboring membranes
(double adsorption) as depicted in Figure 3. In this sec-
tion we will compare the free energy for single and double
adsorption and show under which circumstances pinch-
ing is favored. In Section 2 we discussed already the case
when the distance between the macroions and the neigh-
boring membranes is large and – due to screening – the
deformation ∆d of the membrane is small; we showed
that ∆d ≈ σρ exp (−κd)d3

0/εkc. This result indicates that

3 The adsorption threshold may be estimated by the fol-
lowing simple argument. Consider an adsorbed cylindrical
macroion (length L, radius r0, charged middle axis with
density −ρ) at a charged membrane. Assuming the mem-
brane to be flat the adsorption energy Ead can be eas-
ily calculated by using the fact that the potential Φ of
the membrane at a point with distance z from the bilayer
is given by Φ (z) = 2πσε−1κ−1 exp (−κz). Hence Ead =
− (2πσρL/εκ) exp (−κr0). For |Ead| < T the polyion will not
be adsorbed whereas for |Ead| > T it will stick to the mem-
brane. This means, for instance, that by increasing the salt con-
tent beyond a given value so that κ−1 < κ−1

c the initially ad-
sorbed macroion will be desorbed; here κ−1

c is given by κ−1
c '

εT/2πσρL for κr0 � 1 and by κ−1
c ≈ r0/ ln (2πσρLr0/εT ) for

κr0 � 1.
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for sufficiently high charged systems (large σ and ρ) and
sufficiently flexible membranes (small kc) one may have
pinching. Note that ∆d is predicted to increase also with
decreasing density of macroions, i.e. with increasing d0.
These considerations are, however, only valid for small
deflections. We will show in this section that the condi-
tion for pinching indeed depends on σ, ρ and kc but it is
independent of d0; furthermore a microscopic parameter,
namely the radius of the rod enters into the corresponding
expressions.

Using similar methods as in Section 3 we calculate now
the adsorption energy in the case of double adsorption
and compare it to the energy gain due to single adsorp-
tion. For κr0 � 1 the two membranes have to approach
very closely which leads to a strong repulsion between
them. When this electrostatic repulsion is much larger
than the bending energy one has large deflection angles
α ≈ π/2 as depicted in Figure 3. The electrostatic con-
tribution to the free energy can be estimated easily by
replacing the conformation depicted in Figure 3 by two
flat membranes which cross each other perpendicular at
the position of the macroion; the error can be shown to
be of the order κr0. One finds ∆FMM ' 4πσ2L/εκ2 and
∆FMR ' − (8σρL/εκ)

∫∞
0 duK0 (u) = −4πσρL/εκ. Fur-

thermore the bending rigidity can be estimated to be
∆Fbend ' (π/4) kcL/

(
2
(
1 +
√

2
)
r0
)
' 0.16kcL/r0 (cf.

Fig. 3). The adsorption energy for the pinched state is
then EP = ∆Fbend + ∆FMM + ∆FMR. We compare now
EP with the energy gain ES for the adsorption at a single
membrane. For κr0 � 1 the bending due to the macroion
is small (cf. Eq. (20)) and therefore its contribution to
the adsorption energy is negligible. Then ES is given by
ES = − (4σρL/εκ)

∫∞
0
duK0 (u) = −2πσρL/εκ and is

thus the half of the rod-membrane interaction ∆FMR in
the pinching case. Comparing EP and ES one finds that
for

kc < k0 '
(

1 +
√

2
)

16

(
σρr0

εκ
−

2σ2r0

εκ2

)
(21)

pinching is energetically more favorable than adsorption
on a single membrane. Note that for κρ < σ equation (379)
predicts a negative value of k0, i.e., here the membrane is
so highly charged that one has no double adsorption due
to the strong membrane-membrane repulsion.

Until now we have assumed that α ≈ π/2; let us re-
lease now this constraint. If both membranes have a given
deflection angle α one finds for the membrane-membrane
repulsion ∆FMM ' 4πσ2L/

(
εκ2 sinα

)
whereas one still

has ∆FMR ' −4πσρL/εκ. The bending energy scales
now similar to equation (18), i.e. ∆Fbend ≈ kcLα/r0.
The deflection angle α follows from the minimization of
EP = ∆Fbend +∆FMM +∆FMR which leads to

cotα

sinα
≈

εκ2kc

4πσ2r0
· (22)

Assume now that α = (π/2) − ∆α with ∆α � 1. Then
one finds from equation (22) that ∆α ≈ εκ2kc/πσ

2r0. As
expected ∆α increases with kc. Note that equation (21)
was derived under the assumption that ∆α � 1 for

kc ≈ k0. This is only valid for sufficiently small values
of k0, namely k0 � σ2r0/εκ

2. The α-dependence in the
opposite case α � 1 follows also from equation (22); one

finds α ≈
(
8πσ2r0/εκ

2kc
)1/2

. Comparing the adsorption
energy EP with the value ES for the single adsorption one
finds for the critical bending rigidity (for α� 1)

k0 ≈ 0.4
ρ2r0

ε
· (23)

Note that in this regime k0 is independent of σ but
quadratic in ρ.

Let us summarize the results of this section. (1) For
highly charged membranes or a weakly charged macroion
so that κρ < σ single adsorption is always more favor-
able. (2) For κρ > σ double adsorption is favored when
the membranes have a sufficiently low bare bending rigid-
ity kc:

(2a) for very flexible membranes (with kc � σ2r0/εκ
2)

one has double adsorption (with α ≈ π/2) as long as
kc < k0 where kc is given by equation (21);

(2b) for stiffer membranes (with kc � σ2r0/εκ
2) double

adsorption is favored as long as kc < k0 with k0

given by equation (23); the bending angle is then
very small, α� 1.

All cases are derived under the assumption κr0 � 1.
We note that in the opposite case κr0 � 1 pinching is
usually favorable as long as |Ead| > T . The reason is that
pinching leads to the double value of the adsorption energy
whereas due to geometry and screening the cost in bending
energy as well as the membrane-membrane repulsion is
negligible.

At the present stage no direct comparisons of our pre-
dictions with experiments are available. The polypeptide/
cationic-lipid complexes studied by Subramanian [2] corre-
spond to the non-salt case. Our results may, however, also
shed some light on this case: let us assume κ−1 = 50 Å
(i.e. a screening length that is of the order of the spacing
of the lamellar structure [2]) and r0 = 10 Å. Even for a
moderately diluted charged membrane with σ = e/200 Å2

one has a ratio σ2r0/εκ
2 that is of the order of 4T , a value

that is smaller than the bending rigidity kc ≈ 5T−20T .
Using equation (23) we find for the critical value k0 ≈ 12T
(assuming ρ = e/1.5 Å). This indicates that pinching may
occur in these complexes.

5 Conclusion

In conclusion, we have studied the bending of charged flex-
ible membranes due to the presence of macroions. Rodlike
polyions which are hold in some distance from the bi-
layer induce a bending of the membrane towards them.
We demonstrated this for the case of a regular lattice
of macroions where the deformation profile of the mem-
brane can be calculated rigorously in the framework of
the Debye-Hückel theory. Furthermore, we investigated
the case of adsorbed polyions. We estimated the deflec-
tion angle of the membrane and showed how this angle
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depends on properties of the membrane (charge density,
bending rigidity) as well as of the macroion (diameter, line
density). Finally, we considered the case where polyanions
are localized within a lamellar structure of cationic lipids.
Especially, we demonstrated the possibility of a double
adsorption of the macroion between its two neighboring
membranes (pinching effect). We showed that for suffi-
ciently flexible membranes double adsorption is more fa-
vorable than single adsorption.
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