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Abstract: We give an overview over current coarse-grained models of DNA and the
chromatin fiber. A short review of the major structural elements, interaction
potentials and mechanical parameters relevant for chromatin structure is given.
We then discuss the role of histone tails in nucleosome-nucleosome interaction
and finally report some new results on the simulation of chromatin stretching
by analytical and numerical models.
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1. INTRODUCTION

The genomic DNA and the histone proteins compacting it into chromatin
comprise most of the contents of the nucleus. In every human cell, for
instance, 6.109 base pairs of DNA – that is, a total length of about 2 meters –
must be packed into a more or less spheroid nuclear volume about 10-20 µm
in diameter. This compaction must occur in such a way that the DNA
molecule is still easily accessible to enzymes acting on it, such as
replication, transcription and repair machineries, or regulatory factors.

Figure 1 gives an overview of the many length and time scales that have
to be considered to describe DNA compaction. Describing such a complex
system with molecular dynamics methods that have been successful in
modeling medium-size proteins and protein-DNA complexes would be
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impossible with present computational means and not even desirable (in fact,
such an undertaking would be almost comparable to predicting the weather
by solving the equations of motion of all the water molecules in the
atmosphere). Thus, such a system must be described using some adequate

approximation.
The principle of any such approximation will consist in defining suitable

subunits of the molecule that behave like rigid object on the size and time
scale considered. These objects interact through potentials that may in
principle be derived from the interatomic force fields; however, in practice
one mostly uses potentials that have been determined experimentally. To
derive general principles of DNA and chromatin structure and dynamics,
some models can be described analytically by closed equations; in many
other cases, however, the potentials and the mechanics involved are more
complicated and numerical simulations must be applied. Examples of both
approaches will be given here.

The lowest level of DNA compaction in eukaryotic cells is the chromatin
fiber: 147 bp stretches of DNA, which are wrapped in 1.65 left-handed turns
about histone octamers formed by two copies each of the histones H2A,
H2B, H3 and H4, alternate with free linker DNAs of 20-80 bp length. This
repeating unit of the chromatin fiber is called the nucleosome; the histone
octamer, together with the bound DNA, is the nucleosome core particle
(NCP). The structure of the NCP has been determined by X-ray
crystallography to atomic resolution1-3. At low ionic strengths, the
polynucleosome chain forms a zig-zag, 'bead-on-a-string' structure (10 nm

Fig. 1: Time and length scales relevant in genome organization.
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fiber), clearly seen on micrographs obtained by cryoelectron microscopy.
Under physiological ionic conditions, the chromatin is more condensed (30
nm fiber). Its detailed structure in this state is yet unknown, however,
recently the first high resolution crystallographic structure of a
tetranucleosomes was published4.

Two classes of models were proposed for the arrangement of NCPs
inside the 30 nm fiber: the solenoid models5-7 and the zig-zag models8-13.
According to the solenoid model, the NCPs are packed one by one along a
solenoid helix in the same order as they follow in the chain. The linker DNA
is bent in order to provide a relatively small distance between the
neighboring NCPs. On the contrary, in the zig-zag model, straight linkers
connect the NCPs located on opposite sides of the fiber. The NCPs are also
arranged in a helical order, but the neighbors in space are the second
neighbors along the chain. Most recent experimental data on chromatin
fibers9,11,12,14-16, as well as the tetranucleosome crystallographic structure4,
are rather in favor of the zig-zag model, which is also energetically more
favorable because the linker DNA does not need to bend.

The regular fiber geometry of the zig-zag model can be quantitatively
described in terms of two parameters: the entry-exit angle α of the linker
DNAs at each NCP and the twist angle β between successive NCPs on the
chain. Therefore, in theoretical considerations, this model is often referred to
as the two-angle model13. The angle α is strongly influenced by the linker
histone (H1 or H5) located near the entry-exit region of the NCP. Through
the DNA helix pitch, the angle β is coupled with the linker DNA length.

In reality, the 30 nm fiber structure is not quite so regular. It suffers
transient fluctuations due to thermal motion. Statistical and dynamical
properties of such a complex system can be understood only by means of
numerical simulations. Because of the size of the system, standard all-atom
molecular dynamics techniques that are successful for describing small and
intermediate size biomolecules are not adequate. In order to deal with a
system as large as the nucleosome or beyond, it must be appropriately
‘coarse-grained’, that is, groups of atoms must be comprised into larger units
that are interacting via effective potentials. In recent years, several works
dedicated to computer simulations of the 30 nm fiber were published13,17-23.
In those works, the NCP was modeled by a sphere, an oblate ellipsoid, or a
disk and the linker DNA was considered as a chain of straight segments with
elastic joints. The "coarse-grained" energy defined in these systems was
essentially based on the two-angle model, with α and β  being adjustable
parameters, on the known flexibility parameters of DNA and on reasonable
assumptions for the internucleosome interaction.



4 Chapter 14

2. COARSE-GRAINED MODELS OF DNA

For setting up a model of the chromatin fiber, we must first be able to
describe the mechanics of a long DNA chain. A ‘coarse-grained’ description
of DNA can be achieved using a linear segmented chain. We see in Fig. 1
that the motif of a ‘linear elastic filament’ is repeated through all size scales:
DNA, as well as the chromatin fiber and to some extent its higher order
structures may be approximated by a flexible wormlike chain. An
approximate description for such a molecule is constructed by defining
suitable segments, which behave like rigid cylinders on the time and length
scale considered. Fig. 2 schematizes the segmented chain geometry. The
vector si defines the direction and length of segment i, fi is a unit vector
normal to the segment and gi is an auxiliary vector that is used to take into
account permanent bending of the DNA. The details of this chain geometry
are given in 24.

2.1 DNA flexible wormlike chain – nanomechanical
parameters

Neglecting all structural detail, four parameters are sufficient to describe
the energetics of the segmented chain: elastic constants for bending, torsion
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Fig. 2: Section of a segmented polymer chain as used in the DNA and chromatin models
described here.
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and stretching and the interaction potential between chain segments (the
latter also relating to the thickness of the molecule).

2.1.1 Bending rigidity

The length of the segments must be chosen well below the persistence
length Lp, which is a measure of the bending flexibility of the chain
molecule. It is defined as the correlation length of the direction of the chain
measured along its contour:
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Here   
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r 
u s( )  is a unit vector in the direction of the chain (ei in Fig. 2) and s

resp. s+s’ are the positions along the chain contour, the angular brackets
indicating the thermal average over all positions and chain conformations.
Molecules shorter than Lp behave approximately like a rigid rod, while
longer chains show significant internal flexibility. The bending elasticity A –
the energy required to bend a polymer segment of unit length over an angle
of 1 radian – is related to the persistence length by Lp = A/kBT, kB being
Boltzmann's constant and T the absolute temperature. The energy required to
bend two segments of the chain of length l by an angle θ with respect to one
another is:
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2
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l
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For DNA, Lp has been determined in a number of experiments (for a
compilation, see 25). While some uncertainties remain as regards the value at
very high or low salt concentrations, the existing data agree on a consensus
value of Lp = 45-50 nm (132-147 bp) at intermediate ionic strengths (10-100
mM NaCl and/or 0.1-10 µM Mg2+).

2.1.2 Torsional rigidity

The torsional rigidity C, defined as the energy required to twist a polymer
segment of unit length through an angle of 1 radian, may be related in an
analogous way to a torsional persistence length LT through the directional
correlation of a vector normal to the chain axis and with fixed orientation
relative to the molecular structure of the polymer chain (e.g. for DNA one
would use a vector pointing along the dyad axis for the first base pair and
into a direction of  

€ 

n −1( ) × 360° 10.5  to the left of the dyad axis for the n-
th base pair, assuming a helix period of 10.5 base pairs per turn). Again, C is
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related to LT by LT = C/kBT and the torsion energy between two segments of
length l twisted by an angle φ:

€ 

ET =
kBT
2

LT
l
φ 2 (3)

The torsional rigidity C has been measured by various techniques,
including fluorescence polarization anisotropy decay 26-28 and DNA
cyclization 29-31, and the published values converge on a torsional persistence
length of 65 nm (191 bp).

2.1.3 Stretching rigidity

The stretching elasticity of DNA has been measured by single molecule
experiments 32,33 and also calculated by molecular dynamics simulations 34,35.
The stretching modulus σ of DNA is about 1500 pN, where 

€ 

σ = F ⋅ L0 ΔL
(ΔL being the extension of a chain of length L0 by the force F). The
stretching energy of a segment of length l that is stretched by Δl is:
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Estr =
1
2
σ
l
Δl2  (4)

DNA stretching probably does not play a significant role in chromatin
structural transitions, since much smaller forces are already causing large
distortions of the 30 nm fiber (see below).

2.1.4 Intrachain interactions

The average DNA helix diameter used in modeling applications such as
the ones described here includes the diameter of the atomic-scale B-DNA
structure and – approximately – the thickness of the hydration shell and ion
layer closest to the double helix36. Both for the calculation of the
electrostatic potential and the hydrodynamic properties of DNA (i.e. the
friction coefficient of the helix for viscous drag) a helix diameter of 2.4 nm
describes the chain best24,37-39. The choice of this parameter is supported by
the results of chain knotting40 or catenation41, as well as light scattering42 and
neutron scattering 39 experiments.

As pointed out in24,43 DNA intrachain electrostatic repulsion can be
adequately described by a Debye-Hückel electrostatic potential between two
uniformly charged non-adjacent segments (i, j) in a 1-1 salt solution:
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Here, the integration is done along the two segments, λ i and λ j are the
distances from the segment beginnings, rij is the distance between the current
positions at the segments to which the integration parameters λ i and λ j

correspond; κ is the inverse of the Debye length, so that 

€ 

κ 2 = 8πe2I kBTD ,
I is the ionic strength, e the proton charge, D the dielectric constant of water,
ν the linear charge density which for DNA is equal to 

€ 

νDNA = −2e Δ  where
Δ  = 0.34 nm is the distance between base pairs. More details as to the
normalization of the linear charge density etc. have been given in our earlier
paper 24.

3. SIMULATION PROCEDURES

3.1 Monte-Carlo simulations

The total energy of a segmented polymer chain is given by the sum of
bending, twisting, stretching and intrachain interaction energies (eqs. 2-5):

€ 

Etotal = Eb + ET + Estr + E (e ) (6)

To find a realistic chain conformation, one could now search for the
conformation of minimum energy. Caution must be taken, however, that a
simple search for the minimum of elastic energy will not be enough, because
the system is highly degenerate: at equilibrium there exist a large number of
possible conformations whose energy differs by much less than the thermal
energy kBT 44.

An ensemble of configurations at thermodynamic equilibrium, i.e. at
minimum free energy, can be produced by the Metropolis Monte-Carlo
algorithm 45: Starting from a configuration i with Energy Ei, we generate
configuration i+1 by a small statistical variation, e.g., by translating or
rotating a group of atoms in the molecule. The new energy Ei+1 is then
calculated; the new configuration is counted into the average and taken as

the new starting configuration if either Ei+1 < Ei or 

€ 

X < e− Ei+1−Ei( ) kBT ,
where 

€ 

X ∈ 0,1[ ]  is a uniformly distributed random number. Otherwise the
configuration i is counted again into the average. It can be shown that this
procedure generates an ensemble of configurations of the molecule at
thermodynamic equilibrium at temperature T.
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For the DNA chain, a typical statistical variation (or ‘Monte Carlo
move’) might be for instance a rotation of part of the molecule around a
randomly taken axis. The characteristics of Monte Carlo procedures are
described in more detail in the original papers such as 37,46.

3.2 Brownian dynamics simulations

For calculating the dynamics of DNA, equations of motion for the
segmented DNA chain have to be set up using the intramolecular interaction
potentials described above and including the thermal motion through a
random force. This is the Brownian Dynamics (BD) method 47 which several
groups applied to DNA in interpreting experimental data from fluorescence
depolarization 48, dynamic light scattering 49,50, or triplet anisotropy decay 51.
Superhelical DNA has also been modeled by a BD approach 52,53. The model
allows to predict the kinetics of supercoiling and the internal motions of
superhelical DNA over a time range of tens of milliseconds. This model has
then been used in extensive studies of intramolecular reactions in
superhelical DNA 54-58.

In the model, the equations of motion of a polymer chain of N segments
in a viscous fluid are iterated numerically with a time step δt. The discrete
equations of motion in the solvent for positions ri and torsions φι of the i-th
segment are then 59:

€ 

δri t( ) = δt 1
kBT

Dij
j=1

N

∑ F j +Ri

δφi t( ) = δt 1
kBT

DrTi + Si

 (7)

where Dij is a hydrodynamic interaction matrix (see below), Dr is the
rotational diffusion coefficient (same for all segments), Fj and Ti are the
forces and torques acting on segment j resp. i, and the random translations Ri
and rotations Si are sampled from Gaussian distributions with the following
properties:

€ 

Ri = 0   ;   Ri :R j = 2δtDij

Si = 0   ;   SiS j = 2δtDr

(8)

The (3N x 3N) Dij matrix in the first line of Eqs.7,8 is the Rotne-Prager
generalization of the Oseen tensor 60, which characterizes the hydrodynamic
interaction between two spherical beads (eq. 5 and 6 in Chirico and
Langowski 50) For calculation of this matrix, the cylindrical DNA segments
are approximated by beads with radius rb = 2.53 nm. The model has been
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described in detail in several papers 24,50,52,61, and its code is available on
request from the author.

4. NUCLEOSOMES

4.1 Nucleosome structure

As mentioned above, the structure of the nucleosome core particle is
known in detail from X-ray crystallography 1,2. The histone octamer defines
the wrapping path of the DNA, a left-handed helical ramp of 1 and 3/4 turns,
147 bp length and a ~28 Å pitch. This aggregate has a two-fold axis of
symmetry (the dyad axis) that is perpendicular to the DNA superhelix axis.
A schematic view of the NCP is given in Fig. 3.

The regions where the wrapped DNA contacts the octamer surface are
located where the minor grooves of the right-handed DNA double helix face
inwards towards the surface of the octamer. There are 14 ‘sticking points’ on
the octamer surface, and while structural details for them are known, a
reliable quantitative estimate of the free energy of binding per sticking point
is still missing.

From studies of competitive protein binding to nucleosomal DNA62,63 the
adsorption energy per sticking point is estimated at ~

€ 

1.5 − 2kBT . This
number has to be taken with a grain of salt; first, it does not represent the
pure adsorption energy but instead the net gain in energy that is left after the
DNA has been bent around the octamer to make contact to the sticking point.
A rough estimate of the deformation energy can be obtained from the DNA

Figure 3. The top picture displays only the upper half of the wrapped DNA with its
binding points to the histone octamer (located at the positions where the minor groove
faces the octamer). At the bottom the full NCP is shown from the top and from the side.
Also indicated are the 8 histone tails.
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persistence length 

€ 

LP  of ~50 nm. Then the elastic energy required to bend
the 127 bp of DNA around the octamer (10 bp at each terminus are
essentially straight 1) is given by

€ 

Eelastic

kBT
=
LPl
2R0

2           (9)

Here l is the bent part of the wrapped DNA, ~ 4.3127×  Å 432= Å and 0R  is
the radius of curvature of the centerline of the wrapped DNA that is roughly
43 Å 1. This leads to a bending energy of order TkB58 , a number, however,
that has again to be taken with caution since it is not clear whether the
assumption of a homogeneous elastic filament holds up to such strong
curvatures. Using these numbers nevertheless one can estimate the bending
energy per ten basepairs, i.e., per sticking site, to be of order

TkTk BB 41460 ≈  64.
Together with the observation that the net gain per sticking point is

~ TkB2  this means that the pure adsorption energy is on average ~ TkB6  per
binding site. Note that the huge pure adsorption energy of ~ TkTk BB 85146 ≈×
per nucleosome is cancelled to a large extend by the ~ TkB58  from the DNA
bending, a fact that has important consequences for nucleosomal dynamics.

4.2 Nucleosome unwrapping – analytical model

As has been shown experimentally in several cases, for large enough
external stretching forces the DNA unwraps from the octamer and the
nucleosome falls apart. It seems to be straightforward to estimate the critical
force necessary to induce such an unwrapping from the net adsorption
energy of the 50 nm DNA wrapped in the nucleosome, about TkB30 :

pN
nm
TkF B

crit 5.2
50
30

=≈        (10)

The same critical force should be expected if there are several
nucleosomes associated with the DNA fragment; all of them should unwrap
at the same critical force. However, a recent experiment65 on reconstituted
chromatin fibers resulted in unwrapping forces very different from what Eq.
(10) predicts. The experiment was performed on tandemly repeated
nucleosome positioning sequences with up to 17 nucleosomes complexed at
well-defined positions. When small forces (

€ 

F <10pN ) were applied for
short times (~ s101− ) the nucleosome unwrapped only partially by releasing
the outer 60-70 bp of wrapped DNA in a gradual and equilibrium fashion.
For higher forces ( pNF 20> ) nucleosomes showed a pronounced sudden
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non-equilibrium release behavior of the remaining 80 bp – the latter force
being much larger than expected from the above given equilibrium
argument. To explain this peculiar finding Brower-Toland et al. 65

conjectured that there must be a barrier of ~ TkB38  in the adsorption energy
located after the first 70-80 bp and smeared out over not more than 10 bp
which reflects some biochemical specificity of the nucleosome structure at
that position. However, there is no experimental indication of such a huge
specific barrier – neither from the crystal structure 2 nor from the equilibrium
accessibility to nucleosomal DNA62. Kulic and Schiessel 66 argued that the
barrier is caused by the underlying geometry and physics of the DNA spool
rather than by a specific biochemistry of the nucleosome.

Figure 4. A nucleosome under tension. The top picture defines the two angles involved in the
unwrapping process: the desorption angle α and the tilting angle β. The bottom shows the
nucleosome unwrapping that involves a 180°-rotation of the octamer and the associated
energy, Eq.(13), as a function of α for an applied tension of 6.5 pN. Unwrapping is only
possible as an activated process going across a substantial barrier.

Summarizing the arguments in that work, we show in Fig. 4 the model of
a DNA spool under tension. The elastic energy of a WLC of length L is

( )∫=
L

bend sdsAE
0

2

2
κ         (11)
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with ( )sκ  being the curvature of the chain at point s along its contour (this is
the continuum version of Eq. (2)). The DNA is assumed to be adsorbed on
the protein spool surface along the predefined helical path with radius 0R
and pitch height H , with a pure adsorption energy density per wrapped
length, ak , given by the pure attraction of the binding sites (not including
the bending contribution).

The degree of DNA adsorption is described by the desorption angle α
which is defined to be zero for one full turn wrapped (cf. top of Fig. 4).
During unwrapping the spool needs to rotate transiently out of the plane
while performing a full turn – as already pointed out by Cui and
Bustamante67. Therefore a second angle, β, is introduced to describe the out-
of-plane tilting of the spool, cf. Fig. 4. When a tension F (along the Y–axis)
acts on the two outgoing DNA arms the nucleosome will simultaneously
respond with DNA deformation, spool tilting and DNA desorption from the
spool.

The total energy of the system as a function of α  and β  has three
contributions:

€ 

Etot α,β( ) = Ebend + 2R0k
aα − 2FΔy             (12)

The first term in Eq. (12) is the deformation energy of the DNA chain,
Eq. (11), the second describes the desorption cost and the third term
represents the potential energy gained by pulling out the DNA ends, each by
a distance yΔ .

It is possible to work out the total energy on purely analytical grounds by
calculating the shape and energy of the DNA arms accounting for the right
boundary conditions at the points where the DNA enters and leaves the spool
and at the DNA termini (that are assumed to be far from the spool). Instead
of giving the full analytical expression of 
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Etot  provided in Kulic and
Schiessel 66, we merely present here a reasonable approximation in the limit
for a flat spool with HR >>0 and setting 
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α = β . In this case
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In Fig. 4 we plot the resulting energy landscape for a force of F = 6.5 pN.
The dashed curve corresponds to the value nmTkk B

a 2=  as inferred from
competitive protein binding data (see section 4.1); for the thick curve we
assume a larger value, nmTkk B

a 3=  (see below).
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4.3 Brownian dynamics simulation of nucleosome
unwrapping

A similar unwrapping barrier as predicted above has been found in a
numerical simulation of the unrolling of DNA from the histone core, which
was performed in a recent application of BD (Klenin and Langowski,
manuscript in preparation). A 200 bp DNA was represented as a wormlike
chain as before, and attached to the surface of a cylinder 5 nm thick and 6
nm in diameter, assuming a binding energy of 2 kT per base pair, which was
distributed uniformly along the contour of the DNA. This surface binding
energy, for technical reasons even larger than that estimated in the analytical
theory, is largely sufficient to overcome the elastic energy estimated from
the persistence length (58 kBT).

Fig. 5a: BD simulation of wrapping of a 200 bp DNA on the histone core.

Fig. 5b: BD simulation of unrolling of a 200 bp DNA from the histone core, using a
stretching force of 16 pN.
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Fig. 5a shows a trajectory from a BD simulation of the wrapping of the
DNA on the histone core. Initially, the DNA is bound to one point on the
histone octamer surface and then allowed to equilibrate. It is seen that under
these conditions the DNA forms a superhelix on the cylinder surface within
a few microseconds, the free linker DNA arms diverging slightly from the
nucleosome surface (as earlier shown experimentally by Tóth et al. 68).

Applying a stretching force of 16 pN to the DNA ends leads to
unwrapping of the DNA (Fig. 5b). It is remarkable that the unwinding of the
first turn is quite fast (0.4 µs), after which a barrier has to be overcome by
twisting the nucleosome cylinder (1.8 to 2 µs). Only after this twisting
transition has been made, the second turn can unwind, which again is
analogous to the arrest of nucleosome unrolling as observed in the single
molecule stretching experiments by Brower-Toland et al.65. The simulation
also shows that the first turn is unrolled significantly faster than the second.

4.4 A possible mechanism for nucleosome unwrapping

The results of the analytical and numerical models agree well. The
unwrapping experiment to which we compare them65 utilized dynamical
force spectroscopy (DFS) and exposed the nucleosomal array to a force F
increasing at constant rate Fr , trF F= , and determined the most probable
rupture force 

€ 

F *  as a function of loading rate. The rate of unwrapping is
expected to be proportional to the Kramers' rate 
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exp ΔU −πR Fcrit − F( )( )
from which it can be shown that ( ) constrF F +∝ ln* .

A detailed analysis shows that the rates over the barrier are much too fast
in the model as compared to the rates at which nucleosomes unwrap in the
experiment66. This forced us to critically reconsider the assumptions on
which the model was based, especially the – at first sight – straightforward
assumption that the adsorption energy per length is constant along the
wrapping path. But this neglects an important feature of the nucleosome,
namely that the two DNA turns interact. Clearly the turns are close enough
to feel a considerable electrostatic repulsion, the exact amount of which is
hard to be determined, e.g. due to the fact that the DNA is adsorbed on the
low-dielectric protein core (image effects). Moreover, the presence of
histone tails complicate things. It is known (see Section 5.2) that the tails
adsorb on the nucleosomal DNA. If the nucleosome is fully wrapped the two
turns have to share the cationic tails but if there is only one turn left, all these
tails can in principle adsorb on this remaining turn. All these effects go in
one direction: A remaining DNA turn on the wrapped nucleosome is much
stronger adsorbed then a turn in the presence of the second turn wrapped.
Indeed, very recent data by the same experimental group show that the force
peeks of the discontinuous unwrapping events shift to substantially smaller
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values when the tail are partly removed or their charges partially
neutralized69.

The crucial point is now that the adsorption energy 

€ 

ka  was estimated
from spontaneous unwrapping events of the second turn in the presence of
the other turn 62,63 and thus 
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ka  might have been strongly underestimated
since the nmTkk B

a 2=  include the unfavorable repulsion from the other
turn. To account for this we assumed that there is a different effective value
of 

€ 

ka  for 0>α  (less than one DNA turn) and for 0<α  (more than one turn)
66. Since the discontinuous unwrapping events observed in the experiment
clearly correspond to the case where the last term is unwrapped (i.e. to the
case 0>α ) we tuned the parameter 

€ 

ka  such that we can reproduce the DFS
data in a satisfying way. From this we found that a value of

nmTkk B
a 5.30.3 −=  leads to a good agreement with the experimental data, a

value that is considerably higher than the effective adsorption energy
nmTkk B

a 2=  felt when a turn is unpeeled in the presence of the other turn.

Figure 6. The site exposure mechanism allows access to DNA via spontaneous
unwrapping62,63. The remaining turn (shown in yellow) has a stronger grip on the octamer and
further unpeeling becomes too costly (first-second round difference66; see text for details).

This result might explain how the nucleosome can be transparent to DNA
binding proteins and at the same time stable. When the nucleosome is fully
wrapped each of two turns can easily unwrap spontaneously due to thermal
fluctuations and therefore all DNA is transiently accessible for DNA binding
proteins, cf. Fig. 6. This has been proven experimentally via competitive
protein binding by Widom and coworkers and has been termed the site
exposure mechanism62,63; recently single molecule fluorescence resonance
energy transfer measurements provide additional and more direct evidence
for such conformational fluctuations70,71. What is, however, puzzling in this
set of experiments is why the DNA stops to unpeel further once it encounters
the dyad and why it does not fall apart. Our interpretation of the unwrapping
data suggests that the reason for this is the first-second round difference as
supported by the model calculations. Further simulations using the BD
model will be used in the future to test this hypothesis and quantify its
consequences.
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5. COARSE-GRAINED MODELS OF CHROMATIN

The next higher order structure into which DNA is packed in the
eukaryotic nucleus, the chromatin fiber, can again be approximated by a
flexible polymer chain. At physiological salt concentrations, this structure
has a diameter of 30 nm and a linear mass density of about 5-6 nucleosomes
per 10 nm fiber length, corresponding to approx. 100-120 base pairs / nm.
Thus, the DNA is compacted by about a factor of 30-40 compared to the 3
base pairs / nm for the canonical B-DNA structure. As mentioned in the
Introduction the internal geometry of this structure is still under discussion
with more and more experimental evidence for the zig-zag geometry.

The interaction between nucleosomes plays an important role for the
stability of the 30 nm fiber; recent experiments on liquid crystals of
mononucleosomes 72-75 and also less concentrated mononucleosome
solutions 76,77 show an attractive interaction that can be parameterized by an
anisotropic Lennard-Jones type potential 20. Also, an electrostatic interaction
potential has been computed using the crystallographic structure of the
nucleosome 78. A recent study79 investigates the influence of tail bridging on
internucleosome interaction (see below).

5.1 Persistence length of chromatin

For the chromatin fiber, estimates of Lp are controversial. Experimental,
theoretical and simulation data support values over a wide range starting
from Lp = 30-50 nm from scanning force microscopy (SFM) analysis of end-
to-end distances of chromatin fibers on mica surface 80. However, persistence
lengths measured by SFM strongly depend on the binding conditions of the
fiber to the mica 81. Stretching chromatin fibers at low salt concentrations
with optical tweezers suggests Lp = 30 nm 67, however, chromatin is known
to form a very open structure at low salt. Small persistence lengths of 30–50
nm were also postulated from recombination frequencies in human cells 82

and formaldehyde cross-linking probabilities in yeast 83. These data,
however, are strongly influenced by the constraining of the chromatin chain
inside a finite nuclear volume; also, the persistence length estimated from
looping probabilities depends on the packing density, so these two
parameters cannot be determined independently.

Other groups report stiffer fibers with Lp in the range of 100-200 nm,
based on distance distributions for genetic marker pairs in human fibroblast
nuclei 84-86 or recent experiments in budding yeast using in situ hybridization
and live imaging techniques 87. Stiffer fibers in the range of 200-250 nm are
also supported by computer simulations by Mergell et al. 19.
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Bystricky et al. 87 determined the persistence length and packing density
of yeast chromatin independently by measuring the spatial distance between
genetic markers both in fixed cells and in vivo. In the equation for the end-
to-end distance of a wormlike chain with persistence length Lp,

€ 

r2 = 2Lp
2 Lc Lp −1+ e−Lc Lp( ) (14)

the contour length Lc (in nm) is the ratio of the genomic distance d (in kb)
divided by the linear mass density of the chromatin chain c (in bp/nm) or Lc

= d/c. A fit of eq. 14 to the values of d and r from the distance measurements
yields values for the persistence length Lp = 183 ± 76 nm, and mass density c
= 142 ± 21 bp/nm.

Recent experiments 65,67,88-90 investigated the mechanical properties of the
chromatin fiber by single molecule stretching techniques. For forces below
10-20 pN, the extension of the chromatin chain is defined by its elasticity
and no structural transition occurs, whereas forces above 10-20 pN lead to
the disintegration of nucleosomes. Nevertheless quantities like the stretching
modulus of a chromatin fiber are still unclear. Stretching a nucleosome-
assembled lambda-phage DNA extract with an optical tweezers, Bennink et
al. 88 derived a stretching modulus of 150 pN for a salt concentration of
150 mM NaCl.

5.2 Tail bridging for nucleosome attraction

Recent experiments point towards histone tail bridging as a simple
mechanism for nucleosomal attraction76,77,91. The cationic histone tails
extend considerably outside the globular part of the nucleosome as sketched
schematically in Fig. 3. Mangenot et al. 76 studied dilute solutions of NCPs
by small angle X-ray scattering and suggested that the tails are the main
elements responsible for the attraction (which is supported by the fact that
the attraction disappears once the tails are removed91).

Strong theoretical support that tails are important in the interaction of
nucleosomes within a chromatin fiber comes from a very recent computer
simulation17 where the NCP crystal structure has been mimicked by a
cylinder with 277 charge patches (accounting for charged groups on the
surface of the NCP) with all the tails anchored to it. By switching on and off
the charges on the tails it was found that the tails play a crucial role in the
electrostatic nucleosome-nucleosome and nucleosome-linker DNA
interaction within that chromatin fiber model – especially leading to a
stabilization of the fiber at physiological salt conditions. Even though this
study shows the importance of tails for nucleosomal interaction, it does not
reveal what is really the underlying physical mechanism.
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In a recent study79 we introduced a minimal model for an NCP with tails
to test whether such a model shows similar features as the ones found for
NCPs. Our NCP model, termed the eight-tail colloid, consists of a sphere
with eight attached polymer chains (cf. inset of Fig. 7). The sphere is a very
coarse-grained representation of the NCP without the tails, i.e., the globular
protein core with the DNA wrapped around. The sphere carries a central
charge Z that represents the net charge of the DNA-octamer complex; since
the DNA overcharges the cationic protein core, one has 

€ 

Z < 0  64. The eight
histone tails are modelled by flexible, positively charged chains grafted onto
the sphere. All parameters in the model have been chosen to match closely
the values of the NCP. All charged monomers and the central sphere
experience an electrostatic interaction via the standard Debye-Hückel
interaction (cf. also Eq. 5).
We demonstrated via BD simulation of a single eight-tail colloid 79 that a
single colloid shows indeed similar features as the NCP, especially for small
κ the tails are condensed onto the sphere and by increasing the screening the
chains desorb. We then determined the interaction between two such
complexes and found an attractive pair potential with a minimum of a few

€ 

kBT . The depth of the potential showed a non-monotonic dependence on the
salt concentration which in turn was reflected in a non-monotonic
dependence of the second virial coefficient 2A  with a minimum around
conditions where the tails unfold. Again, all these observations are
qualitatively similar to the experimental ones 76.

Figure 7. NCP-interaction potential with the NCPs represented by eight-tail colloids (inset);
σ = 3.5 Å. Note the strong dependence of the potential depth on the charge fraction of the tail
monomers (see 79 for details).
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Most importantly, the interaction potential shows a strong dependence on
the fraction of charged monomers in the tails, cf. Fig. 7. Starting from a
fraction f of 0.36 we find a depth of the potential of about 6 kBT that nearly
disappears when f is reduced to 0.28. This suggests that the tail bridging can
be used by the cellular machinery to control DNA compaction and genetic
activity. It is in fact known that the cellular machinery is capable of
controlling the charge state of the histone tails via the acetylation (the
"discharging") and deacetylation (the "charging") of its lysine groups.
Active, acetylated regions in chromatin are more open, inactive, deacetylated
regions tend to condense locally and on larger scales as well 92. For instance,
chromatin fibers tend to form hairpin configurations once a sufficiently
strong internucleosomal attraction has been reached 19,93. This suggests a
biochemical means by which the degree of chromatin compaction and
genetic activity can be controlled via a physical mechanism, the tail-bridging
effect.

5.3 Simulation of chromatin fiber stretching

In the low-force regime, nucleosome unrolling does not play a significant
role in the dynamics of the chromatin fiber, thus the nucleosome can be
simply modeled as a rigid cylinder. In a recent study (Aumann et al. (2005)
manuscript submitted) we simulated the stretching of 100-nucleosome
chromatin fibers using our earlier Monte-Carlo model 20 and extracted the
nanomechanical parameters of the 30 nm fiber from these simulations. The
geometry used in these simulations is essentially the ‘two-angle’ model as
described above. The chromatin fiber is approximated as a flexible polymer
chain consisting of rigid ellipsoidal disks, 11 nm in diameter and 5.5 nm in
height. Internucleosomal interactions are approximated by a more simple
potential function than that discussed in the previous section: their attraction
is modeled by an anisotropic Lennard-Jones type potential whose depth and
minimum position depend on the relative orientation of the two nucleosoms
(Gay-Berne-Potential). The disks are connected by linker DNA, which is
represented by two cylindrical segments. Incoming and outgoing linker
DNA are set 3.1 nm apart vertically on the NCP surface. The length of the
linker DNA depends on the presence of linker histones and on the repeat
length, which varies from organism to organism 94. To explore the influence
of the linker histone 12, simulations were performed with and without a stem
motif added to each nucleosome. To simulate the stretching of the fiber, we
added a pulling energy term Epull to the total energy of the conformations
during the MC steps, which is proportional to the x-component of the
distance between the first and the last nucleosome of the fiber,
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E pull = −M ⋅
r 
r 1,x −

r 
r N ,x  ,   where M is the stretching modulus and   

€ 

r 
r i,x  is the x-

component of the position vector of nucleosome i.
Chains of 100 nucleosomes were simulated using ‘pivot’ Monte-Carlo

moves where parts of the chain were rotated with respect to each other. As in
our previous simulations 20, the linker DNA entry-exit angle α was taken as
26° for the initial conformation. This value converges to an effective angle
αsim in the range of experimental values between 35° and 45° 12  due to the
electrostatic forces and thermal fluctuations. Simulations were done with
either a condensed fiber as a starting conformation or an initial conformation
where all segments are ordered in a straight line.

To check the statistics of the simulations, we calculated the
autocorrelation function 

€ 

G ΔN( ) = X N( )X N + ΔN( ) X N( )2 , where N is the
Monte Carlo step number and X either the energy, end-to-end distance or
mass density of the fiber conformation at step N. ΔN is the number of steps

Fig. 8:  Stretching simulation of a fiber consisting of 100 nucleosomes (red), linker
segments (blue) of repeat length l = 205 nm, an opening angle αinit=26° and a twisting
angle β=90°. Top is a typical example of an equilibrated structure. Then the fiber is
extended by applying an external pulling force Fpull = 5 pN and further equilibration
initiated (center and bottom).
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separating two conformations, and the angular brackets denote the average
over the complete trajectory. During the MC procedure, G(ΔN) decreases
exponentially with a typical ‘correlation length’ Ncorr. We considered two
conformations statistically independent if they were separated by at least
Ncorr steps on the trajectory. For the relaxation of the total energy of both
systems, we found a maximum of Ncorr ≈ 3600 MC steps, for the end to end
distance  Ncorr ≈  3200 and for the mass density Ncorr ≈ 2600. Thus, we
performed 5.105 MC steps for the initial relaxation of the chain
corresponding to more than 100 statistically independent conformations.
After the equilibration the stretching potential was switched on and at least
3.106 MC steps were performed.  For the final analysis, every 1000th
conformation was used. Typical fiber conformations during the simulation
are shown in Fig. 8.

The bending and stretching rigidities of the modeled chromatin fiber are
computed from the trajectories from the fluctuations in the bending angle or
the fluctuation in the overall fiber length, respectively. The results show that
the bending and the stretching stiffness of the chromatin fiber strongly
depend on the local geometry of the nucleosome. Both the persistence length
Lp , characterizing the bending stiffness of the fiber, and the stretching
modulus ε, which describes the stretching stiffness of the fiber, decrease if
either the linker lengths or the opening angle are increased, or the twisting

Figure 9:  Persistence length of modeled 30 nm chromatin fibers with different
nucleosomal repeats in the presence and absence of linker histone H1. The twisting
angle between adjacent nucleosomes is adjusted to the canonical value of 360° per 10.5
bp. The persistence lengths of fibers with linker histone (closed symbols, dashed lines)
are higher than for fibers without linker histone (open symbols, solid lines). This effect
is stronger for short repeats and weakens with increasing repeat length. The peaks
show that the twisting angle strongly influences the stiffness of the fiber, leading to a
non-monotonous variation of Lp with nucleosome repeat.
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angle is reduced. This behavior is independent of the presence of the linker
histone H1. The latter decreases the opening angle α between the entry and
exit of the linker DNA and as a result leads to a more condensed fiber
structure for high salt concentrations95. This is in agreement with our
simulations since the presence of the linker histone-induced stem motif
yields higher persistence lengths thus stiffer fibers (Fig. 9).

The other major result of the simulation comes from comparing the
persistence length of the modeled fibers to that of a hypothetical rod from a
isotropic elastic material having the same stretching rigidity as the chromatin
fiber. Such a rod would have a bending rigidity 4-10 times higher than that
actually measured, or simulated here. Thus, the chromatin fiber is less
resistant to bending than to stretching. This property of the chromatin fiber is
important for its ability to condense and decondense, for example to prevent
or allow transcriptional access. Chromatin fibers thus seem to be packed
more easily via dense loops than by a linear compression. The formation of
hairpin structures has been observed in cryo-EM pictures under the presence
of MENT, a heterochromatin protein that mediates higher order chromatin
folding 93. Some hairpin conformations could also be seen in simulations
especially for higher internucleosomal attractions 96.

Double-stranded DNA is different from chromatin as far as the ratio of
stretching and bending elasticity is concerned 97: The stretching modulus ε of
dsDNA for physiological salt conditions is estimated to ∼1100 pN 33,98.
Assuming a homogenous elastic rod with a radius of 1 nm for DNA yields a
bending persistence length of Lp = 70 nm, which is only a factor of 1.4
higher then the persistence length of 50 nm for dsDNA; thus, dsDNA is
almost equally resistant to stretching and to bending.

As mentioned before, the exact value for the persistence length of the
chromatin fiber is still under discussion, with estimates ranging from 30 nm
to 260 nm. Some of the small values in this range were obtained at low salt
concentrations, where a smaller persistence length compared to our results
for high salt can be expected, since low salt is known to open the fiber. Other
experiments resulting in small persistence lengths were done in constrained
volumes by cross-linking procedures 82,83. Under these circumstances, the
condition of an unconstrained self-crossing walk is only fulfilled over short
distances. Thus, for a given chain flexibility, the measured apparent
persistence length will depend on the genomic separation and folding
topology for which it is calculated87. The effect of spatial confinement on the
apparent persistence length of a chromatin chain is further elaborated in a
recent publication99. Furthermore, a persistence length in the range of the
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fiber diameter of 30 nm would lead to extremely irregular structures, which
are hard to be reconciled with the concept of a “fiber”.

Analysis of the distance distribution for genetic marker pairs in human
fibroblast nuclei 84-86 provide higher values of Lp = 100-140 nm based on a
wormlike chain model. Recent experiments in budding yeast using
optimized in situ hybridization and live imaging techniques87 report stiff
interphase chromatin fibers estimating a persistence length of 120-200 nm.
The persistence lengths that we obtain from the MC simulations for linker
lengths of 10 and 15 bp are in the range 50-280 nm, decreasing with longer
linkers.

Bennink et. al. derived 150 pN as stretching modulus for a salt
concentration of 150 mM NaCl 88, using optical tweezers for the stretching
of a nucleosome-assembled lambda-phage DNA extract of a Xenopus laevis
egg with no linker histones attached and nucleosome repeat length of 200 bp.
Our simulations yield a lower value of 40 pN already for a repeat length of
192 (no linker histone). One reason for this discrepancy may be the
difference of 50 mM in the salt concentrations, since our simulation
parameters have been calibrated for 100 mM NaCl. A lower salt
concentration leads to a lower compaction thus to a lower stretching
modulus. Furthermore the solution used in the tweezers experiment contains
proteins known to act close to the entry-exit points similar to the linker
histones. This is supported by the Monte-Carlo simulations, which for a
repeat length of 200 bp (with stem) yields a stretching modulus in the range
of 90-160 pN. Nevertheless the Gay-Berne potential used in the MC model
is only an approximation of the nucleosome-nucleosome interaction, which
is strongly dependent on salt conditions. To improve the quantitative
predictions of our model, more detailed interaction potentials are need, as for
instance the tail-bridging interaction outlined here. Moreover, for the
modeling of nucleosome unwrapping and interpreting corresponding
experiments65,88, the DNA – nucleosome interaction has a decisive role.
Inclusion of such potentials into the chromatin fiber model will provide a
deeper insight in the architecture and behavior of the chromatin fiber as it
undergoes biologically important modifications, as well as into its role in
transcription and gene regulation.
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