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In this paper we present a theoretical description of the accessibility of nucleosomal DNA to proteins. We
reassess the classical analysis of Polach and Widom (1995) who demonstrated that proteins (in their case
restriction enzymes) gain access to buried binding sites inside a nucleosome through spontaneous
unwrapping of DNA from the protein spool. We introduce a straightforward nucleosome model the
predictions of which show good agreement with experimental data. By fitting the model to the data we
obtain the values of two quantities: the adsorption energy to the histone octamer per length of DNA and
the extra length that the DNA needs to unwrap beyond the binding site of an enzyme before the enzyme
can act as effectively as on bare DNA. Our results indicate that the effective binding energy is surprisingly
low which suggests that the nucleosomal parameters are tuned such that two large energies, the DNA
bending energy and the pure adsorption energy, nearly cancel. This paper is based on a lecture presented
at the summer school “DNA and Chromosomes 2009: Physical and Biological Applications”. We follow
the lecture as closely as possible which is why we spend more time than usual on issues that are already
well-known in the field, and why we discuss some well-known results from a different perspective.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

DNA in eukaryotes is highly compacted through the complexa-
tionwith cationic protein assemblies; the histone octamers [1]. The
compactionmainly serves two functions: to allow the huge amount
of DNA (e.g. a total of 2m of DNA chains per human cell) to fit inside
the micron-sized cell nucleus, and to provide an additional layer of
control for gene expression by varying the compaction level along
the DNA. The latter plays a role in cell differentiation allowing for
different cell types, despite them sharing identical genomes.

When we look at the detailed structure of this compacted DNA,
called chromatin, the question arises how the DNA can be accessed
by transcription factors, polymerases, and other proteins. Most of
the DNA seems inaccessible because it is tightly wrapped around
millions of protein cylinders. Each of those DNA spools, the so-
called nucleosomes, consists of 147 bp (bp) of DNAwrapped in 13/4
turns around an octamer of histone proteins and is connected to the
next nucleosome by a short stretch of so-called linker DNA of only
10e90 in length. As a result around three quarters of the DNA is
wrapped which seems to imply that most of the DNA is inaccessible
to DNA binding proteins simply for steric reasons.

From its crystal structure [2] we know that the nucleosome
features fourteen regions where the wrapped DNA is in contact
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with the octamer surface, located where the minor groove of the
DNA double helix faces inwards towards the surface of the octamer.
In each contact region there are several direct hydrogen bonds as
well as positive charges that attract the negatively charged phos-
phates of the DNA backbone. In order to bind at those sites the DNA
has to pay a high price because it needs to bend substantially. To
estimate the energy associated with this bending we employ the
wormlike chain model, which is very successful in describing DNA
elasticity, at least for modestly bent DNA. It is not clear how well
this model works for strongly bent DNA inside a nucleosome but
we assume it can be employed to calculate a rough estimate of the
energy involved. In a nucleosome 127 bp of DNA are bent around
the octamer (10 bp at each terminus are essentially unbent [2]).
According to the wormlike chain model [1] the energy Eelastic
associated with this bending is

Eelastic
kBT

¼ lPl
2R20

(1)

Here lP ¼ 50 nm is the DNA persistence length, kB is Boltzmann’s
constant, T is the temperature, lz127� 0:34 nm ¼ 43 nm is the
bent part of the wrapped DNA, and R0z4:3 nm is the radius of
curvature of the centerline of the wrapped DNA (see Fig. 1). This
leads to a total bending energy of about 58 kBT.

In order for the nucleosome to be stable, the pure binding
energy of the 14 sites should exceed this 58 kBT by an energy at least
in the order of 1 kBT per binding site. However, we also expect it to
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Fig. 1. A partially unwrapped nucleosome with exposed nucleosomal binding sites
(stars). The nucleosome can lower its energy by closing those binding sites at the cost
of bending the DNA.
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be not much more than this because the DNA inside the nucleo-
some needs to be accessible somehow. If the difference between
the pure binding energy and the bending energy is small enough,
one can imagine that the nucleosome can make parts of its DNA
temporarily accessible through spontaneous unwrapping, as indi-
cated in Fig. 1 which shows a partially unwrapped nucleosome.

Polach and Widom [3] demonstrated that nucleosomes indeed
show such opening fluctuations. They studied nucleosome core
particles that consist of 147 bp of DNAwrapped around the histone
octamer. Since all the DNA is wrapped in that case, one should
expect that it would not be accessible to DNA binding proteins if the
DNA is too strongly bound. Yet it was found that nucleosomal DNA
gets digested when it is exposed to restriction enzymes, a special
class of enzymes that cut DNA at specific positions. Moreover, it was
observed that the closer the cutting site was located towards the
center of the wrapped DNA, the slower this digestion, but the
reaction was always possible.

In this paper we give a theoretical estimate of the effective
binding energy, i.e. the difference between the pure binding energy
and the bending energy, of the DNA to the nucleosome using data
from Ref. [3]. Before we introduce a model that allows us to esti-
mate the binding energy (Section 3), we first discuss the relevant
experiment [3] and what interesting quantities can be extracted
from it.
2. Probing nucleosome accessibility with restriction enzymes

In this sectionwe discuss how the accessibility of a DNA binding
site inside the nucleosome was determined experimentally and we
discuss the reaction equations associated with the breathing of the
nucleosome and the digestion of the DNA. The situation is sche-
matically depicted in Fig. 2(a). Suppose a protein binding site,
denoted by the light gray section in Fig. 2, is located somewhere
inside the wrapped portion. The protein, denoted by “R”, cannot
bind in that case. The nucleosome is a dynamic structure however;
its DNA unwraps and rewraps spontaneously from both ends and
occasionally the DNA unwraps far enough to make the binding site
accessible to the protein. We expect that the probability of this
happening decreases with the distance from the binding site to the
closest terminus of the wrapped portion and is smallest when the
binding site is located in the center of the wrapped portion.

To demonstrate and measure this wrapping and unwrapping
mechanism Polach andWidom [3] used restriction enzymes. These
proteins cut DNA at a specific position in a specific short base
sequence. A large number of different kinds of restriction enzymes
occur naturally in bacteria and archaea. Their function is to protect
the organism against foreign DNA, usually of viral origin. They
recognize short sequences in the foreign DNA that do not occur in
the organisms own DNA and destroy it by simply cutting at
a specific site in the short sequence. Polach and Widom [3] deter-
mine the exposure of the cutting site by measuring the rate at
which the DNA is degraded. As long as the nucleosome is suffi-
ciently wrapped the restriction enzyme cannot bind due to steric
hindrance. When the nucleosome “breathes” spontaneously, i.e.
unwraps its DNA far enough beyond the binding site of the enzyme,
the enzyme can bind and then either unbind again or cut the DNA
at that particular site, see Fig. 2a. Bymeasuring the fraction of uncut
DNA as a function of time one can determine the cutting rate. This
rate can then be compared to the cutting rate in a solution of bare
DNA, i.e. not wrapped around histone octamers, under identical
conditions to determine the probability that that particular binding
site is accessible to the protein, see Fig. 2b. (Actually, in the
experiments the conditions are almost but not exactly identical:
since the cutting in the case of bare DNA is much faster than in the
case of nucleosomes, the experiments on the bare DNA are per-
formed at restriction enzyme concentrations that are typically two
or three orders of magnitude lower than in the case of nucleo-
somes. However, as we will see later, the cutting rate is propor-
tional to the enzyme concentration. One can then determine the
probability that a certain binding site is accessible by comparing
the ratios of cutting rate and enzyme concentration for nucleo-
somes and bare DNA).

We now show how the probability that a certain site is acces-
sible can be determined from the cutting rates of the nucleosomal
DNA and the bare DNA. In our derivation of the rate at which the
DNA is cut we make three assumptions. The first is that the ratio of
the concentration of substrate and the total concentration of
enzyme is small so that the concentration of free enzyme can be set
equal to the total concentration of enzyme (free and bound). This is
the case in the experiments we are considering and it simplifies the
theoretical treatment considerably since the rate equations are
linear in that case. The second assumption is that the slowest
relaxation rate in this system of coupled reaction equations is much
slower than the other relaxation rates. This means that in the
experiments we see a single relaxation time instead of a combina-
tion of two (that might or might not be distinguishable due to
measurement errors). Finally, we assume that the equilibrium
between open and closed nucleosomes is fast so that the ratio of
open and closed nucleosomes is constant during the measurement.

Let us consider first the set of reactions with the bare DNA,
Fig. 2b. We denote the bare DNAwith “S” (S standing for “site”, the
site where the enzyme binds), the restriction enzyme with “R”, the
complex of the enzyme and the DNA by “RS” and the cut DNAwith
“P” (P stands for “product”). The reaction scheme is then

Sþ R#
k23

k32
RS/

k34 Pþ R (2)

Here k23 and k32 denote the forward and backward rates for the
binding and unbinding of the restriction enzyme to its target site
and k34 is the irreversible rate of the cutting of the DNA. For this
reaction scheme one can estimate the rate of decrease of the
amount of intact, uncut DNA bywriting down the rate equations for
the concentrations of the different species. In a compact matrix
notation the master equation reads as follows:

d
dt

�
cS
cRS

�
¼
��k23cR k32

k23cR �k32 � k34

��
cS
cRS

�
(3)

Here cS is the concentration of sites S, cRS the concentration of
bound restriction enzymes and cR the concentration of free,
unbound enzymes. These concentrations are functions of time. We
assume that the concentration of enzymes is large enough so that
this concentration can be considered constant, i.e. cR[cRS at all
times, so we can set cRðtÞzcRð0ÞhcR;b (here “b” stands for bare).
Eq. (3) is then a set of linear first-order differential equations for cS
and cRS. The concentration of the product P is not considered since
it is directly related to the concentrations of cS and cRS. Solutions of
Eq. (3) are linear combinations of



Fig. 2. The setup of Polach and Widom [3]. (a) A fully wrapped nucleosome unwraps spontaneously, thereby exposing the binding site (light gray) for the restriction enzyme R. The
enzyme cuts the DNA at this particular site. (b) Same setup in the absence of the histone octamer.

P. Prinsen, H. Schiessel / Biochimie 92 (2010) 1722e17281724
ciðtÞ ¼ ciel
it ¼

 
ci1
ci2

!
el

it i ¼ þ;� (4)

with cþ ¼ ðlþ þ k32 þ k34; k23cR;bÞT and c� ¼ ðl� þ k32 þ k34;
k23cR;bÞT the eigenvectors of the 2 � 2 matrix in Eq. (3) and

l� ¼ 1
2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k32 þ k34 þ k23cR;b

�2�4k23cR;bk34
q

� k32 � k34

� k23cR;b

�
ð5Þ

the corresponding eigenvalues, where the plus sign in � should be
used for lþ and the minus sign for l�. �lþ and �l� are called the
relaxation rates or decay rates of the components proportional to
cþ and c�, respectively, as can be seen from Eq. (4).

Generally, the initial concentrations, cSð0Þ and cRSð0Þ, are not
known. However, we want to measure a single decay rate in the
experiments so we assume that jl�j[jlþj. This is the case if and
only if ðk32 þ k34 þ k23cR;bÞ2[k23cR;bk34. Then after a very short
timez1=jl�j only the component with the smaller decay rate,�lþ,
survives whereas the faster mode has died out. The experimentally
determined rate constant kbare that controls the decay of the bare
DNA is then simply

kbare ¼ �lþz
k23cR;bk34

k32 þ k34 þ k23cR;b
(6)

If we assume, for simplicity, that cRSð0Þ ¼ 0 (which holds if we add
the restriction enzyme to the DNA solution at t¼ 0) then a sufficient
condition for cRS � cR;b is k23cSð0Þ � lþ � l�z� l�zk32 þ k34
þk23cR;b.

We now determine the corresponding rate constant for the
cutting of the nucleosomal DNA. The reaction scheme, Fig. 2a, is as
follows:

Nþ R#
k12

k21
Sþ R#

k23

k32
RS/

k34 Pþ R (7)

As before, we assume that cR[cRS so that cRðtÞzcRð0ÞhcR;n (“n”
stands for nucleosome) in which case we have three linear first-
order differential equations for cN, cS and cRS. We also assume that
the first reaction in (7), the equilibrium between the open and
closed nucleosome, is fast compared to the other ones, namely the
binding and unbinding of the restriction enzyme and the cutting of
the DNA by the restriction enzyme. One can show that this is the
case if k21[k32 þ k34 þ k23cR;n (this follows for example from
Appendix A, specifically Eq. (28) together with the assumption
jl1j[jl2j). Then the most negative eigenvalue (which corresponds
to the fastest rate) of the matrix pertaining to the three differential
equations (analogous to the matrix in Eq. (3) above) is
l1z� ðk12 þ k21Þ (see Appendix A). After a short time z1=jl1j the
ratio cN=cS is approximately constant and equal to k21=k12 and we
can simplify the master equation to

d
dt

�
cN þ cS
cRS

�
¼
��k23cR;npopen k32

k23cR;npopen �k32 � k34

��
cN þ cS
cRS

�
(8)where

popenh
cS

cN þ cS
z

k12
k12 þ k21

: (9)

The quantity popen has a simplemeaning: it is the probability to find
the binding site open or, in other words, it is the fraction of time the
binding site is open. Eq. (8) corresponds to the following reaction
scheme

Dþ R #
k23popen

k32
RS/

k34 Pþ R (10)

where D represents the intact DNA, i.e. N and S lumped together.
This reaction scheme is the same as that for the bare DNA case, Eq.
(2), with cS replaced by cD ¼ cN þ cS and k23 by k23popen. There is an
additional factor popen because the restriction site is only available
in a fraction popen of the DNA molecules.

Analogous to the case of bare DNA, we assume that the smaller
of the two eigenvalues (in absolute value), l3, is much smaller
than the other one, l2, which is the case if and only if
ðk32 þ k34 þ k23cR;npopenÞ2[k23cR;npopenk34. Then for times larger
than z1=jl2j D will decay with a single decay rate

knuclz
k23cR;npopenk34

k32 þ k34 þ k23cR;npopen
(11)

If we assume again, for simplicity, that cRSð0Þ ¼ 0 (restriction
enzyme added to the DNA solution at t ¼ 0) and if we also assume
that cN and cS are in equilibrium at t ¼ 0, in other words
k12cNð0Þ ¼ k21cSð0Þ, then a sufficient condition for cRS � cR;n is
k23cSð0Þ ¼ k23popenðcSð0Þ þ cNð0ÞÞ � k32 þ k34 þ k23cR;npopen.

One can determine popen from knucl. However, one needs to
know the values of the rate constants k23, k32 and k34. If
k32 þ k34[k23cR;b; k23cR;npopen matters simplify considerably. In
that case
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knucl
cR;n

zpopen
kbare
cR;b

(12)

In other words, comparing the two rates for DNA cutting, that for
nucleosomes, knucl, and that for bare DNA, kbare, we can easily
determine popen without explicitly having to determine the other
rate constants. Note that we canwrite knuclzk23cR;npopenpcut where
pcuthk34=ðk32 þ k34Þ is the probability that the enzyme cuts the
DNA when it is bound to it (as opposed to unbinding). In other
words, the enzyme binding determines the rate of digestion of the
DNA. To summarize, the restrictions on the rate constants and
concentrations that lead to Eq. (12) are:

� R1: k32 þ k34[k23cS
� R2: k32 þ k34[k23cR;npopen
� R3: k32 þ k34[k23cR;b
� R4: k21[k32 þ k34 þ k23cR;n

In the experiments of Polach and Widom [3] Kmhðk32 þ k34Þ=
k23[cS for both the experiments with bare DNA and the ones with
nucleosomes, which implies that R1, and thus the assumption
cRS � cR;n; cR;b, is justified. In the same paper it is claimed that
k21 � 105 s�1. However, subsequent measurements showed that
k21z20� 90 s�1 [4]. Together with k23(108 M�1 s�1 [5] this
implies that k21=k23 � 200� 900 nM[Km þ cR;n (cR,n � 100 nM
and Km z 1�10 nM, see [3]). This means that indeed
k21[k32 þ k34 þ k23cR;n (R4). Finally, since popen � 10�2, as wewill
see shortly, and since cR;b is typically about two to three orders of
magnitude smaller than cR;n, we have Km[cR;b; cR;npopen so k32 þ
k34[k23cR;b; k23cR;npopen (R2 and R3). All the assumptions that
lead to Eq. (12) are thus fulfilled.

Fig. 3 shows the results of the experiment. We plot popen as
a function of xb, which is the position along the DNA of the binding
site of the respective restriction enzyme (in bp). Experiments have
been performed for positions close to the entrance, which is at
xb¼ 1 bp, up to close to themiddle of thewrapped portion, which is
at xb ¼ 74 bp. Note that the accessibility is greatly reduced for
binding sites anywhere in the nucleosomal DNA as compared to
bare DNA, even for binding sites close to the terminus of the
Fig. 3. Probability popen for a binding site to be open. The position of the binding site,
xb , is given in base pairs. The termini of the wrapped portion are at xb ¼ 1 bp and at
xb ¼ 147 bp. The data are taken from the restriction enzyme analysis [3]. Shown is
also the theoretical curve, Eq. (14).
wrapped portion. Moreover, the data points lie roughly along
a straight line in the logelinear plot. This suggests that the prob-
ability decays exponentially from the termini towards themiddle of
the wrapped portion.

Note that it seems that we have more restrictions on the rate
constants than Polach and Widom even though we arrive at the
same expression for the rate of decrease of total nucleosome
concentration as they do (Eq. (12)). However, they make some
assumptions that were not made explicit in their paper. We discuss
this further in Appendix B.

Also note that Eq. (10) is a different effective reaction scheme
from that found in Ref. [6]. In that paper it is claimed that the
right side of Eq. (7) follows the classical MichaeliseMenten rela-
tionship. This is not true in general however, since S is constantly
replenished from the stock of closed nucleosomes, N. Their
assumption is valid if �ðk32 þ k34Þ is the largest eigenvalue, in
absolute value, but this is not the case here as can easily be seen
from estimates of the reaction constants. So, contrary to their
claims, they do put restrictions on the reaction rates (the steady
state assumption in the MichaeliseMenten equation implies
additional restrictions).
3. Model for nucleosome breathing

The experiments of Polach and Widom [3] demonstrate that
DNA binding proteins can reach their target sites within nucleo-
somal DNA because of spontaneous opening fluctuations of the
nucleosome. In this section we extract the energetics involved in
this so-called site exposure mechanism from the data shown in
Fig. 3. For this we need to relate the experimentally measured
quantity popen to the adsorption energy per base pair on the
nucleosome fcrita. Here fcrit is the critical force that would be
needed to unpeel the DNA from the histone octamer and az0:34
nm is the distance between base pairs. We introduce the dimen-
sionless parameter qhfcrita=kBT and we assume that the unwrap-
ping state of the nucleosome only depends on the number of
unwrapped base pairs at each end of the DNA. We number the base
pairs of the DNA that can be adsorbed on the histone octamer from
x ¼ 1 to x ¼ L ¼ 147. The unwrapping state of a nucleosome is then
characterized by the section fxL;/; xRg that is still wrapped, where
1 � xL � xR � L. The dimensionless complexation energy of a fully
wrapped nucleosome is �qL whereas a partially unwrapped
nucleosome has a lower complexation energy �qðxR � xL þ 1Þ. We
sum over all possible states weighted with the corresponding
Boltzmann factor to get the partition function

Z ¼
XL
xL ¼1

XL
xR ¼ xL

eqðxR�xLþ1Þz
eqðLþ2Þ

q2
(13)

where we used the fact that fcrit ¼ Oð1pNÞ and kBTz4:1 pN nm at
room temperature so q � 1 and qL[1.

We now suppose that there is a restriction site between base
pairs xb and xb þ 1 with 1 � xb � L� 1. Note that many
restriction enzymes do not cut simply between two base pairs
but produce overhangs (short single-stranded sections). In that
case we define the restriction site as exactly between the cuts in
the two single strands. We are interested in the probability that
the restriction site is accessible to the restriction enzyme. We
assume that in order for the restriction enzyme to bind it is not
sufficient that the DNA is unwrapped up to the restriction site but
that d extra base pairs of DNA have to be unwrapped. This is
schematically depicted in Fig. 4. The probability that the restric-
tion site is accessible is then



Fig. 4. Schematic depiction of different wrapping states of the nucleosome. In case (a)
the binding site (light gray) is closed and thus not accessible to the restriction enzyme.
Case (b) shows a situation in which the left end of the nucleosome is unwrapped to
a position xL with xL � xb þ d. That means the binding site is open.
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popen ¼ 1
Z

0
@ XL

xL ¼ xbþdþ1

XL
xR ¼ xL

eqðxR�xLþ1Þ þ
Xxb�d

xL ¼1

�
Xxb�d

xR ¼ xL

eqðxR�xLþ1Þ
1
Aze�qd

�
e�qxb þ e�qðL�xbÞ

�
(14)

Since L[1 we can treat xb as a continuous variable. A least-
square fit of Eq. (14) to the data in Fig. 3 leads to the curve depicted
in that same figure and does indeed show a reasonable agreement.
The optimal fit parameters (� one standard deviation) are
q ¼ 0:104� 0:016 and d ¼ 30� 12 bp. The latter value suggests
that a substantial amount of DNA needs to be unwrapped before the
restriction enzyme can cut as efficiently as on a bare DNA substrate.
The former gives a critical unwrapping force fcrit ¼ 1:3� 0:2 pN or,
written differently, fcrit ¼ 0:31� 0:05 kBT=nm. The net adsorption
energy of the total amount of DNA is Enet ¼ fcrit50 nm ¼
15� 2 kBT .
4. Discussion

We have introduced a model that allows us to determine from
experiments two important parameters that characterize the
successful binding and cutting of restriction enzymes on a nucle-
osomal binding site: the effective adsorption energy of the DNA
on the histone octamer per unit length of DNA (or critical force)
fcrit and the extra length of DNA d that needs to be unwrapped
before the restriction enzyme cuts as effectively as on bare DNA.
We found d to be quite substantial, namely d ¼ 30� 12 bp. It
would be interesting to perform similar experiments but with
a nucleosome complexed to longer stretches of DNA and to study
whether the cutting efficiency is reduced even for binding sites
outside the wrapped part but within a distance d of the nucleo-
somal entrance points. The theoretical curve in Fig. 3 predicts
popen for those cases.

The absorption energy of the DNA on the histone octamer was
found to be fcrit ¼ 0:31� 0:05 kBT=nm which amounts to a net
adsorption energy of Enetz15 kBT . We mentioned in the intro-
duction that the adsorption energy per binding site should not be
toomuch larger than kBT to allow for breathing but also not smaller
than kBT to have well-defined binding sites. Interestingly the
average net binding energy per site is around 15 kBT/14z 1 kBT, i.e.
at the lower boundary of the expected range. This is a surprisingly
small number, especially taking into account the fact that we
calculated above, in Eq. (1), that the elastic energy Eelastic is about 4
times larger. This suggests that nature has tuned the pure adsorp-
tion energy Eads such that its value is close to Eelastic, namely
Enet ¼ Eads � Eelasticz15kBT (15)
with Eadsz75kBT and Eelasticz60kBT .

Being so dynamic, however, might come at a cost: the nucleo-
somemight not be very stable and easily fall apart. This is especially
the case if a protein binds at a DNA binding site that is located deep
inside the nucleosome. Once the protein is bound, the nucleosome
cannot rewrap but might easily unwrap completely and disinte-
grate. Another example is the case when the nucleosome is under
tension which can easily happen inside the nucleus where many
motor proteins are at work all the time. Experiments [7] where
nucleosomes have been unwrapped completely in micromanipu-
lation setups suggest that the last turn is much more stable against
unwrapping than the above analysis suggests. We interpreted this
as a consequence of the two-turn geometry of the nucleosome by
arguing that the turns feel an effective repulsion [8]. This repulsion
would help the first turn to unwrap more easily leading to the
substantial breathing observed in Ref. [3]. The breathing data, Fig. 3,
might indeed suggest that popen is significantly reduced for themost
inner data point. However, the neighboring data points show no
reduction of popen, even though the DNA might have to be
unwrapped more than one turn due to the large value of the extra
length d. We have fitted a model with two adsorption energies, one
for the first 3/4 turn and one for the last turn, to the data in Fig. 3 but
the fit is not very different from the single adsorption energymodel.
The estimated errors in the parameters aremuch larger in the latter
case from which we conclude that the error in the measurements
are too large to justify using the more complicated model.

As mentioned earlier, it is unclear whether the wrapping and
unwrapping of the nucleosome canbe described byafirst-order rate
process. In fact, the DNA is adsorbed on the histone octamer at 14
equally spaced contact points. The range of the adsorption potential
is presumably small whereas the DNA has to stretch completely to
recover the bending energy. This means that there is an energy
barrier between the adsorped and desorped state at each contact
point. In that case the wrapping should be described as an equilib-
rium process between DNA adsorped at all points, desorped at one
point, desorped at two points and so on. One can show that if the
desorption rate is much smaller than the adsorption rate then the
differences between the relaxation rates aremuch smaller than their
absolute values which means that it is very hard experimentally to
distinguish between a single relaxation rate and a combination of
relaxation rates. We will come back to this point in a future paper.

All this is unimportant if the equilibration between different
adsorption states is fast compared to the enzyme binding and DNA
cutting. In that case only the equilibrium distribution of adsorption
states is relevantandonecanspeakofaprobability that therestriction
site is openwithout having to refer to an opening and closing rate.

Note that in our model for nucleosome breathing we assume
that there is a constant binding energy per base pair even though in
reality there is an adsorption site every 10 bp [2]. Furthermore, we
treat the cutting position xb as a continuous variable even though it
is not. These assumptions simplify the computations considerably
and the only difference is that the fit in Fig. 3 would otherwise
consist of horizontal lines with vertical jumps every 10 bp. The
spread in the experimental data is too big to determinewhere these
jumps occur.

The current paper focused on equilibrium properties of nucle-
osomal breathing. In the meantime data on the dynamics of
breathing have become available. Those data are extracted from
experiments that use FRET (fluorescence resonance energy trans-
fer) in which two fluorescent dyes are placed at strategic positions
allowing direct monitoring of the breathing dynamics [4,9e16]. We
are currently extending our model to explain the dynamics of



P. Prinsen, H. Schiessel / Biochimie 92 (2010) 1722e1728 1727
breathing as observed in those FRET experiments (see also
Ref. [17]).
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Appendix A

If the concentration of free enzyme cR is approximately constant
and equal to the initial concentration cR,n then the rate equations
corresponding to the reaction scheme in Eq. (7) are

d
dt

0
@ cN

cS
cRS

1
A ¼

0
@�k12 k21 0

k12 �k21�k23cR;n k32
0 k23cR;n �k32�k34

1
A
0
@ cN

cS
cRS

1
A (16)

The rate constants, which are equal to minus the eigenvalues li,
i ¼ 1;2;3, can be calculated from the characteristic equation of the
matrix

l3i þ a2l
2
i þ a1li þ a0 ¼ 0 (17)

where the coefficients, which are all positive, are given by

a2 ¼ k12 þ k21 þ k32 þ k34 þ k23cR;n; (18)

a1 ¼ ðk12 þ k21Þðk32 þ k34Þ þ k23cR;nðk12 þ k34Þ (19)

and

a0 ¼ k12k23cR;nk34: (20)

We now assume that

k23cR;nðk12 þ k34Þ � ðk12 þ k21Þðk32 þ k34Þ; (21)

which is equivalent to k12k23cR;n � ðk12 þ k21Þðk32 þ k34Þ and
k23cR;nk34 � ðk12 þ k21Þðk32 þ k34Þ, since all reaction rates and
concentrations are positive. The smallest eigenvalue (in absolute
value), l3, is found by equating the last two terms in Eq. (17)

l3z� a0
a1

z� k12k23cR;nk34
ðk12 þ k21Þðk32 þ k34Þ

: (22)

It is easy to show that for l ¼ l3 the first two terms in Eq. (17)
are indeed much smaller than the last two:					 l33
a1l3

					z k12
ðk12 þ k21Þ

k34
ðk32 þ k34Þ

k12k23cR;n
ðk12 þ k21Þðk32 þ k34Þ

k23cR;nk34
ðk12 þ k21Þðk32 þ k34Þ

� 1 (23)

where we have used Eq. (21) and the fact that 0< ða=aþ bÞ< 1 if
a and b are positive, and

ja2l
2
3

a1l3
jz k12

ðk12 þ k21Þ
k23cR;nk34

ðk12 þ k21Þðk32 þ k34Þ

þ k34
ðk32 þ k34Þ

k12k23cR;n
ðk12 þ k21Þðk32 þ k34Þ

þ k23cR;nk34
ðk12 þ k21Þðk32 þ k34Þ

k12k23cR;n
ðk12 þ k21Þðk32 þ k34Þ

� 1:

(24)
We now show that l3 is indeed the smallest eigenvalue (in
absolute value). The three solutions to Eq. (17) obey the relations

l1l2l3 ¼ �a0; (25)

l1l2 þ l1l3 þ l2l3 ¼ a1 (26)

and

l1 þ l2 þ l3 ¼ �a2: (27)

Eqs. (22) and (25) show that l1l2za1 which leads to the conclusion
that l1 and l2 have the same sign (since a1 is positive) and, together
with Eq. (26), that jl1l3 þ l2l3j � l1l2. Combining Eqs. (21) and
(22) leads to k�1

12 þ k�1
34 � �l�1

3 or, equivalently, �l3 � k12 and
�l3 � k34 which implies �l3 � a2. Combining this result with Eq.
(27) leads to l1 þ l2z� a2 so l1 and l2 are both negative. The
equation jl1l3 þ l2l3j � l1l2 can then be rewritten as
�l�1

1 � l�1
2 � �l�1

3 or, in other words, all eigenvalues are negative
and jl1j[jl3j and jl2j[jl3j. We remark that Eq. (21) implies that
a2zk12 þ k21 þ k32 þ k34 which, together with l1l2za1 and
l1 þ l2z� a2, leads to the conclusion that l1z� ðk12 þ k21Þ and
l2z� ðk32 þ k34Þ and that either can be the largest.

The (exact) eigenvectors corresponding to the three eigenvalues
are

vi ¼
0
@
�
li þ k21 þ k23cR;n

�ðli þ k32 þ k34Þ � k23cR;nk32
k12ðli þ k32 þ k34Þ

k12k23cR;n

1
A

(28)
for i¼ 1, 2, 3. The solution to Eq. (16) is a linear combination of these
eigenvectors0
@ cN

cS
cRS

1
A ¼

X3
i¼1

aivie
lit : (29)

We assume that cRSð0Þ ¼ 0 in which case a1 þ a2 þ a3 ¼ 0 and
k12

P3
i¼1 aili ¼ cSð0Þ. We also assume that cN and cS are in equi-

librium at t ¼ 0, in other words, k12cNð0Þ ¼ k21cSð0Þ. Then
k12

P3
i¼1 ail

2
i ¼ �ðk32 þ k34 þ k23cR;nÞcSð0Þ. The coefficient a1 is

given by a1ðl1 � l2Þðl1 � l3Þ ¼ ðl1 þ k12 þ k21ÞcSð0Þ=k12 and the
other ones are found by permuting the indices. The maximum
concentration of complex cRS is k12k23cR;n

P3
i¼1 aiexpðlisÞ where s

is the solution of
P3

i¼1 ailiexpðlisÞ ¼ 0. We then have the exact
expression

cRS
cR;n

� k23cSð0Þ


k12 þ k21 þ l3
l2ðl1 � l3Þ

el3s � k12 þ k21 þ l1
l2ðl1 � l3Þ

el1s
�

(30)

If we now use the fact that k12 þ k21 þ l3< k12 þ k21, jl3j � jl1j,
0< expðlisÞ< 1 and jk12 þ k21 þ l1j � k12 þ k21 we find

cRS
cR;n

(
k23cSð0Þðk12 þ k21Þ

l1l2
z

k23cSð0Þ
k32 þ k34

: (31)

This means that cRS � cR;n if k23cSð0Þ ¼ k23popenðcSð0Þ þ cNð0ÞÞ
� k32 þ k34.

Appendix B

Here we report the assumptions made by Polach and Widom in
their paper, some of which were not made explicit. They mention
the following restrictions on the rate constants: k21[k23cR;n and
k23cS � k32 þ k34ðk21[k12ðkconfeq � 1 in their notationÞ is not
necessary to arrive at Eq. (12)). However, they also make the steady
state approximation for cS and cRS which means jdcS=dtj � k12cN þ
k32cRSzk21cS þ k23cR;ncS and jdcRS=dtj � ðk32 þ k34ÞcRSzk23cR;ncS.
If there is one single decay rate during the measurement (which is
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the assumption) then jc�1
N dcN=dtjzjc�1

S dcS=dtjzjc�1
RS dcRS=dtj

zknuclzk23cR;npopenpcut. The steady state assumptions then imply
k21 þ k23cR[k23cR;npopenpcut and k32 þ k34[k23cR;npopenpcut.
There is one additional assumption that is made which is not
immediately obvious. From the reaction equations we have the
exact relation dðcN þ cSÞ=dt ¼ �ðk34cRS þ dcRS=dtÞ. In the deriva-
tion of knucl in Ref. [3] it is assumed (implicitly) that
dðcN þ cSÞ=dt ¼ �k34cRS, in other words, that k34cRS[dcRS=dt
which is the case if (and only if) k32 þ k34[k23cR;npopen (for bare
DNA we find in a similar way k32 þ k34[k23cR;b). Finally, the
restriction k21[k23cR;n can be replaced by the less restrictive one
k12 þ k21[k23cR;npcut. This means that Polach and Widom’s
restrictions are really

� P1: k32 þ k34[k23cS
� P2: k32 þ k34[k23cR;npopen
� P3: k32 þ k34[k23cR;b
� P4: k12 þ k21[k23cR;npcut
� P5: k21 þ k23cR;n[k23cR;npopenpcut

where P4 and P5 can be replaced by the more restrictive
k21[k12 þ k23cR;n. This means the only restrictions Polach and
Widom do not mention in their paper are P2 and P3.

We also have restrictions P1, P2 and P3 but we have the
restriction k21[k32 þ k34 þ k23cR;n instead of P4 and P5. Our
restriction implies P4 and P5 but the reverse is not necessarily true.
It turns out however that our assumption that �ðk12 þ k21Þ is the
largest eigenvalue (in absolute value) is too strong; it can also be
the second largest eigenvalue. This is shown in Appendix Awhere it
is also shown that the only assumptions one needs to derive
knuclzk23cR;npopenpcut are P1, P2 and P4; P5 is not needed (and P3 is
needed for the bare DNA case).
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